o Matrices —

4.1 DEFINITION
Let us consider 3 set of simultaneous equations,

X+2y+3:45;: =0
4x+2y+5z+7¢ 0

3x+4 +2z+61 = 0. ions and encloc.
y . . ¢ of the above equalio nclose ther,
Now we write down the coefficients of x, y, 2,

within brackets and then we get

i

1235
3426 .
e rows and columqp. .
The above system of numbers, arranged in a rectangular array in e
bounded by the brackets, is called a matrix. nts. It is termed g 7,
It has got 3 rows and 4 columns and in all 3 x4 = 12 (;lcg](::le;r.lcnt, the first Sbec/'
matrix, to be read as [3 by 4 matrix]. In the double subscripts of a SCripy

. in which the element 1
determines the row and the second subscript determines the column 1 ”‘QS‘
a; lies in the ith row and Jth column.

4.2 VARIOUS TYPES OF MATRICES | e
(1) Row Matrix. If a matrix has only one row and any number of columns, it is calleq

a Row matrix, e.g.,

(27 39]
(2) Column Matrix. A matrix, having one column and any number of rows, is called
1
Column matrix, e.g., | 2
3

(3) Null Matrix or Zero Matrix. Any matrix, in which all the elements are zeros,

called a Zero matrix or Null matrix e.g.,
0000
0000
(@) Square Matrix. A matrix, in which the number of rows is equal to the numbe
columns, is called a Square matrix e.g.,

23
14
(¢) Diagonal Matrix. A Square matrix is called 4 diagonal matrix, if all its non-dias

elements are zero e.g.
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o Unit or Identity Matri

. X.
ents are unity and non-j; are matrix . g & ; p
elem On-diagon matrix is called a unit matrix if all the diagonal

ments are 7€ro e.g.,

0 1 o 1 0O
0 o 1 . 0 1

(¢) Symmetric Matrix, A squa
;g = " re . ‘
and J, 1€ Qi = Gji OF A" = A ¢ o matrix will be called symmetric, if for all values of i

a h
g

h b f

(h) Skew Symmetric Matrix gA e
o 2y for all values of -y sq::\r:’ rr_latrix is called skew symmetric matrix, if
(2) All diagonal elements are zero, e Y
’ -g'l

0 -h -g

h 0 -f

&8 f O

;) Triangular Matri .

e zérz) is ca%led an thnx. A.Square matrix, all of whose elements below the leading diagonazl

ar d"n dia ; pper triangular matrix. A square matrix, all of whose elements above
the leading gonal are zero, i1s called a lower triangular matrix e.g.

1 3 2

;3 14

O 0 6 & Gt
Upper triangular matrix Lower triangular matrix

)] Tr.anspose of a Matrix. If in a given matrix A, we interchange the rows and the
corresponding columns, the new matrix obtained is called the transpose of the matrix A and

is denoted by A” or AT e.g.,
2 1 6
,A =13 0 7
4 5 8
(k) Orthogonal Matrix. A square matrix A is called an orthogonal matrix if the product
of the matrix A and the transpose matrix A’ is an identity matrix e.g.,
A.A =1
if|A| = 1, matrix A is proper.
(I) Conjugate of a Matrix
1+i 2-31 =
Let AT gszi: = 3-2:‘}
Conjugate of matrix of A is A
Z=— 1—i 2+3i 4 ]
L 7-21 i 3+21
a matrix A is denoted by A°.

(m) Matrix A®. Transpose of the conjugate of
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'y e 4
Let ’1“{7‘¢’z’, -—l:" ‘S ]
— rad A3 4
A®lw_gt & 3+2
-1 7-21
(Z)'=[z+3i i
4 3+214
pap 7=21
or A =[2+3i i
4 3+21§ )
() Unitary Matrix. A square matrix A is said to be unitary if
A%A =1
1+i —1+i Jeg A=d
e.g. A = 2 2 A9 = 2 2. , A-A% =1
2 2 2 2

_ .. (o) Hermitian Matrix. A square matrix A = (a;) is called Hermiatian matrix, i every
i7jth element of A is equal to conjugate complex j-ith element of A.

In other words a; = @
1 2+31i 3+
g 2-3;i 2 1-2i
3-i 1+2i 5
_ Necessary and sufficient condition for a matrix A to be Hermitian is that A = 48 ;,
conjugate transpose of A
or A= A).
(p) Skew Hermitian Matrix. A square matrix A = (a;;) will be called a Skew Hermitiap

matrix if every i-jth element of A is equal to negative conjugate complex of j-ith element of
A.

‘In other words a; = —ay

All the elements in the principal diagonal will be of the form
a; = —-a; or ag;+a; =0

If ai;=a+1ib then a; = a-ib

(a+ib)+(@a-ib)=0 or 2a = Oora = 0
So a;; is pure imaginary or a;; = 0.
Hence all the diagonal elements of a Skew Hermitian Matrix are either zeros or pure
imaginary.

. i 2-37i 4+5i
e.g. -(2+3)) 0 2i r
-(4-5) 217 -3 '
The necessary and sufficient condition for a matrix A to be Skew Hermitian is that
A® = —4
A)'= -4
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0 —tan& — sin @
IfA = a and 7§ - _A‘ cos a
7 t - IS a unj i + ‘ ns o = .
an 0 matrix, show that / + A u ) si -

g Ira ==[ cosa  sing .
’ - Wt . o
SIn X, cos en show that A" = [ cCosna smnna ] where n is positive integer.

S
T

! 3 -4 —sinna cosna
| g9, IfA = 1 _l].lhenshowtha:An=[1+2" alion
| n 1-2n
{ 10. Iff(x) = X =20x+8, find £ (A) where A= : ; ; Avs: O
-2 -4 -4
0 -1
11. Show that 09s6 = sin 6 _ i —lani 1 mn-g
sin® cosg@ | T 0 2
tan3 1 —tan% 1

3 -3 4
12. A=(2 -3 4 showthatA:;:A_,'

0 -1 1

13. Verify whether the following matrix is orthogonal. A = L ; —3 ;
31 _ 1 2 2 '
1 1 -2 2
14. Verify that 3] —2 1 - 2 ]is an orthogonal matrix.
-2 -2 -1
cos ¢ 0 sin ¢ 4
15. Show that sin@sing cos® —sinBcos¢ | isan orthogonal matrix.
—cos Osin ¢ sin 6 cos 0 cos ¢

cos® 0 sin®
16. Show thatA = 0 1 0 | is an orthogonal matrix.
—sin® 0 cos6

i der, explain in general
17. If A and B are square matrices of the same or ) _—
() (A+B)? = A’+2AB+B* (i) (A -B)? # A2-2AB+B* (iD(A+B)(A -B)y# A
18. Let A and B be any two matrices such that AB = 0 and A is non-singular.

Then (a) B=0; (b) B is also non-singular; (c) B=A; (d) B is singular.

(A.M.LE.TE., Winter 1996) Ans. (

410 ADJOINT OF A SQUARE MATRIX.
Let the determinant of the square matnx Abe|Al

as
ay, a aj a, a;
If A= b] bz b3 Then]A|= b] 52 i:;
c 2 @
cp C2 €3 . '
The matrix formed by the co-factors of the elements in [A] is
A Az A
B, B B

Cl Cz C3
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by Dy | = —bey+bie
) = = - 0|C3 31
where Ay = /,’ ‘,,,"l m by = Dacas A = l(-, 3
2 {
. a; 43| = —axcytax
= 203 + d3c2
Ay = b b2 bycy = b2cr < Aol I c2 €3 ’
) P 2
a, @ 2 = - ay @2 | = —ac2t+ a2l
[}2 - /‘.' (‘; = (l|('3~(l_1€| 5 1] k= ) C2
a 4| = —ab + azb)
- ay ay = o b — 103
C = /1)2 I I = llz[)_y—(lgbz. () lbl b3 ’
a) a; b
= = abz; — 4291
& s 12
Then the transpose of the matrix of co-factors
A B G
Ay By G
A; By G
A,

is called the adjoint of the matrix A and is written as adj

4.11 PROPERTY OF ADJOINT MATRIX ' |
s equal to unit matrix multiplied by the determinant

The product of a matrix A and its adjoint 1
A.
If A be a square matrix, then (AdjointA) - A = A - (AdjointA) = |Al-1
a, az aj A] Bl Cl
Let A=|b b by|andad.A= A, B2 (2
oS B %) C3 A3 B3- C3
a, a; as Al B Ci
A-(adj.A) =| b1 b2 by x| A2 B2 €2
cp. €2 . €3 A3 B3 C3
a,A,+a2A2+a3A3 ale+asz+agB3 a C1+02C2+03C3
= b1A1+b2A2+b3A3 blB]+szz+b3B3 b C|+b2C2+b3C3
C]A1+6‘2A2+C3A3 ClBl+Csz+C3B3 C) C|+C2C:2+C3C3
|[A] O 0 1 0 0
0 |a] 0 |=lal|0 1O = |A|I
0 0o |A]| 0 0 1
.12 INVERSE OF A MATRIX
If A and B are two square matrices of the same order, such that
AB=BA =1 (I = unit matrix)

\en B is called the inverse of A i.e. B = A-!and A is the inverse of B.
Condition for a square matrix A to possess an inverse is that matrix A Is non-singular,

o, |A] # 0
If A is a square matrix and B be its inverse, then AB = [

Taking determinant of both sides
|AB| = |1] or |A[|B] =1
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" the matrix A is non-singular that |A| # 0
o find the inverse matrix by lh.l,

i {

he
We know that A - (A4 4) ‘-lrl) of adjoint matrix

or -
[A | Provided [A | # 0

and A-Al =1 . -1 1
3 o e = m(Adj.A}
Example 18. If A = [2 ‘:; 4
=35k Fond 45
0 -1 ; » find A=,

Al =
The co-factors of el Al =3(-3+4)+3(2-0)+4(-2-0) =3+6—38
ements of various rows of |A| ar
S (=) (3-0)
| (=12+12)  (=123:8) * (=06)
Therefore the matrix formed by the co-factors of | A | is

. 3. -3 4
Solution. A =[2 _3 4J

= 1

] =2 =2
I -1 0
-1 3 3|,Ad.A=|-2 3 -4
0O -4 -3 9 3 _1
LT ) 1 1 =l 0 1 -1 0
AT mpaadiA =i =2 3 =41 _2 3 -4 Ans.
-2 3 -3 -2 3 =3
] -8 1 4
Example 19. If A = 9 4 4 7 |, prove that A-! = A’, A’ being the 1ranspose of A.
] -8 4 (A.M.1LE., Winter 2000)
lf—s 1 4] [-8 4 1]
Solution. If A =3 4 4 71 A’:-‘; 1 4 -8
1 -8 4| 4 7 4J
[-8 ! 4] [-8 4 ]
4.4'=‘§ 4 4" 7 'S 1 4 -8
] -8 4 4 7 -4
-32+4+28 —8—8916}

= 31 —37*4?'28 }

P heie w=32%78 468416
gg o 0] [1 O 07 )
_1/70 81 0f=|0 1 0| or AN =1
81| o0 o 81 [0 0 1]

- Proved
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Example 20. If a matrix A satisfies a relation Al+A-T =
d , an identity matrix. _
" f;olullo,r: AH:: mj\’+A -1=0 or A2+AI=1 or A @a+h =
|AllA+I] = 1]
5 |A] # Oand soA” cxisls
Again A2+ A—-1=0 or A’+A = (1)
Multiplying (1) by A~! we get
A-1(A2+A) = A-'1 or A+ = Al
or A-l = I+A Provcd )
(ABy"! = B-1.A7! (A-M-E 5)
Hence prove that (A~) ™ = (A™)~! for any positive integer m.
Proof. We know that : .
AB)-(B-'A-1) = [(ABB-1]-A} = [ABBTI4
—(an-a-t=4-A7"1=1
Also B-'A-'.(AB) = B-1[A"!- 4B = B~'A A) - B]
= B-1(I-B] = B-'-B=1
By definition of the inverse of a matrix then B-1A-!is inverse of AB.
or B'A"! = (4B)™! Proved.
p @myt = (4 - Am-1t = @amm T AT
=(A-A"" 2)-1. CAC = (AT 2)-1. A1 CA- = (Am—Z)—l (A1)
_ A Am-It @R = (AT AT (A2 =(A"73) 7t (Al
=A@t = (A" Proved.
Example 22. Prove that the inverse of a matrix is unique.
Proof. We suppose that B and C are two inverse matrices of a given matrix say A.
Then AB = BA =1 - B is inverse of A.
and AC = CA =1 C is inverse of A.
But C-(AB) = (CA)-B (Associative law)
or c-1=1-B or C=28
' Proved.

Hence the inverse of matrix A is unique.
Example 23. Find A satisfying the Matrix equation.

(521075 - [5 -
sowion. [2 11a[<2 _2]-["2 4]

Both sides of the equation are pre-multiplied by the inverse of [g 1 ] i.e [ = =
21771 -3 2 |

3305 4002 03 2] ]



Example 24. Given

ﬁnd C such that

Solution.

3 2|

or

or

(UV I S
[am—y

W D =
[—

Il

I

4]
__3‘
1
4] 5
_3- 2
!
4] 0
_3-L_2
e
5—

215
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. T 1 1 -2 1 1 3 -1
# =[-1 2 1,P=[{0 3 » » showthat P-1 4p — 0
01 -] 1 1 1 0

3
2}, show that (AB)"! = g1 4-1,
1 ;

5 3
Also compute BA. Is AB = BA? 9 -2 -4
Ans, 5,31- 1 2 -1}
-12 1 7
9.  Find the condition of k such that the matrix
1 3 4
A= 3 k 6|hasaninverse, Obtain A~ fork = 1.

-1 51 ' (AM.LETE., Summer 1997)
3 1 -29 17 14
Anms. k#-%5, Al=g| 9 5 6
16 -8 -8

10. Prove that (A~ ") = (A7),
11. Let  be the unit matrix of order  and adj. (2 7) = 2* I. Then k equals
(@) 1 b) 2 (c) n-1 (d) n. Ans. (¢)
4.13 SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS

Let the equations be
aixt+ayy+a;z = d,
byx+byy+byz = d,
QX+ Cry+c32 = ds

We write the above equations in the matrix form

ax+ay+azz dl a, a; a X dl
bix+byy+bsz |=|dy| or [b by byl y|=]d,
Cix+cyy+cesz d3 . 2 €G3 || 2 d
AX =B A1)

T ee——
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Find the inverse of the following matrices by partitoning l | )
) ;}, 5 : <) i] Ans. 10 : | :
. ] : 2 | ) 5 .
-5 2 ] 5
L J (I3 =5
[ 1 2 -1 Ans.—| 5 3 )
5. Z--x 1 2] e F s .
2 -1 1 - ]
. 1= 10 4 91
2 3 4 Ans.5| 15 -4y,
6. ;1 2? l -5 1 6
1 -3 7
7. 2 4 5 2 -1
3 5 6 J
—1 11 7 _9
3 4 2 7 1l—-1 -7 -3 16
8 2 3 3 2 Ans. 5 1 1 =1 0
518 P

4.25 CHARACTERISTIC ROOTS OR EIGEN VALUES - ,
he characteristic muatrix, where

(a) For a given square matrix A4, A _ ] matrix is called t

A is scalar and I is the unit matrix.
2 2 1
A=|1 3 1
1 2 2

100
_alo10]|=
001

2 1
3-A 1
2 2-A

characteristic matrix

Let
2—A

1

1

Z21
A-Al =131
122

(b) Characteristic Polynomial
lynomial, which we call as

The determinant |A — Al | when expanded will give a po

characteristic polynomial of matrix A.
2-A 2 1
For example | 1 3-A 1
2 2-A

1
= (2-N)(6-5A+A2=2)-22-A-1D+1(2-3+])

=A3-7A2+11A-5

(c) Characteristic Equation
The equation |A—AZ| = Ois called the characteristic equation of the matrix A e.g.

AM-7A2+11A-5=0

(d) Characteristic Roots or Eigenvalues

The roots of characteristic equation [A —A/| = O are called characteristic roots of matrix

A. ep.
A-7X+11A-5=0

A-1)A-1)(A-5)=0 I,1,5
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v 1, 8.

C1mportant Propertje
ome T perties of 15

, ) e "
(1) ANy square matriyx 4 Reuvalyeg

) Tha . and
Note. Ihe sum of gy S transpose A/
¢ Llcl\\cms on (hl 05¢ A" have the same cigenvalues.

C Drincin: g i '

Principal diagonal of a matrix is called the trace
e T alueg
(3) The product of . S of a matrix e :
) the Cigenvalyes of IriX is equal to the trace of the matrix.
(4 M AL A A, are the eig S of a matrix A is equal to the determinant of A

o envalues ‘ .
(1) kA are k A\, k 0 alues of A, then the eigenvalues of

(2) The sum of the cigeny

(i) A~ are 1 l k., (i) A™ are AT, XF, .coeee s Boh
A o — 1
1 )\.2 B * 3.
Example 59. Find the eHiarie -)‘" (A.M.I.LE.T.E., Winter 1997)
acteristic roots of the matrix
6 -2 2
-2 3 -

. 2 . 1
Solution. The characteristic equatio ?
no

{6—7» -2 5
=2 B=% - _
TR

the given matrix is

3-A
6—-XA)(9- 2
( )(3 OA+A - 1)+2(~6+2A+2)+2(2-6+27) =0
-+ 12X =3604+32 = §
By trial, A = 2 is a root of this equation.
_ 2
A=-2)(A*=10A+16) =0 or A-2)(A-2)(A—8).=0
A = 2,2, 8 are the characteristic roots or Eigen values. Ans.
Example 60. The matrix A is defined as

l1 2 -3
A={0 3 2
0 0 -2

Find the eigenvalues of 3 A% +5A?—-6A+21
Solution. |A—-AI| =0

1-A 2 -3
g 3=X 2]

il
o

0 0 —-2-A
(1 —)»)(3—7\.)(—2—}») =0 or A=1,3=2
Eigenvalues of A3 = 1,27,-8; Eigenvalues of A? = 1,9,4
Eigenvalues of A = 1L B & Eigenvalues of I = 1. 1.4
Eigenvalues of 3 A+ 5A2-6A+2I

First eigenvalue 3R +50)PF-6()+2 =14
Second eigenvalue = 3 (27) +3 ©)-6(3)+2(1) = 110
Third eigenvalue =3 (—8)+5(4)"6("2)+2(1) =10

Required eigenvalues are 4,110, 10. Ans.
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Example 61,
A=A

I AL Ay ... A, are the eigen values of A, find the eigen values of the matrix
Solution, (4 - 2 = 42 INAI+N P = A2-2AA+ N1
Eigenvalues of 42 are AL, A2 3 e K
Eigenvalues of 2 A o are 2AA;, 2A A5, 2A A3 . 240,
Eigenvalues of A2 7 gre X2
Eigenvalues of A2-2A A +A27 are
M=2AA +)\2‘):5'_2Alz+x2,}\§—2lk3+k2_...
o A =22 A =A% A=A, e A=A A

Example 62. Prove that the following matrices have the same characteristic equation.

a b ¢ b ¢ a c a b
b ¢ al,|c a b|, |a b c
c a b a b ¢ b ¢ a

Solution. Characteristic equation of first matrix is |[A=A/| = 0

a-»A b c
or b c—A a = 0.
c a b-A

(a-2) [7\2—}»(17+c)+bc—a2]—b(bz—ac—b?»)+c(ab—cz+c}») =0
or —}»3+?»2(a+b+c)+l(—ab—ac—bc+a2+b2+cz)
+(abec —a® - b3 +abc +abc—3) = 0
A -A2(@+b+c)-A(a*+b*+c*-ab-bc—ca)

or
+(@+b+3-3abc) = 0.
The symmetry of the result shows that characteristic equation for the other two matrices
will also be same. Proved
Example 63. Prove that a matrix A and its transpose A" have the same characteristic
roots.
Solution. Characteristic equation of matrix A is
|[A-A| = 0. ()
Characteristic equation of matrix A" is
|[A"=M|=0 )
Clearly both (1) and (2) are same, as wle krow that
|A] = |A

i e.. adeterminant remains unchanged when rows be changed into columns and columns into rows

Proved

Example 64. If A and P be square matrices of the same pe and if P be invertible
¢ matrices A and P=! AP have the same characteristic rooys

(A.M.I.E.T:E.. Summer 1998, Winter 1996)

. t B= P 'AP and we will show th .
ution. Let us PY at characteristj i r
h ioand B are the same and hence they have the same characteristic root;lc Squarigns S8

t = L
o B_,}J:P—IAP—A.I:P TAP-P l)\.lP:P-l(A_)\J)P

show that th

4_‘
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[B=M| | p1a. ayp| =Pt [A=HI | 7|
A=t | PV |P|=|A=2] |p-' P
NA-w| 1] = [A=-d]as]T] =1

and hence same
Proved

s, then prove that AB and BA

Thus the matrices A and p ),
]."-m-wrislic roots,

Example 65, If A and B pe
¢ the same characteristic rooqg

| Ave the same characteristic equations
¢
O Square invertible matrice
hay
Solution. Now AB = JAB = p-' (AB) = B~ (BA) B alhl?
But by Ex. 64, matrices BA ang p- ' (BA) B have same characteristic roots Or matrices
pA and AB by (1) have same characteristic roots. Proved
Example 66. If A and B be 5 rowed square matrizes and if A be invertible, show s

6L i -1 P
the matrices A~"B and BA~! haye the same characteristic roots.

Solution. A—'B=A"'BI=A"B(A“A)=A"(BA")A. (1)
But by Ex. 64, matrices BA~'and A~ (BA - 1) A have same characteristic roots or matrices
Proved

- -1
pA~'and A~" B by (1) have same characteristic roots.
Example 67. Show that 0 is a characteristic root of a matrix, if and only if, the matrix

is singular.
Solution. Characteristic equation of matrix A is given by

|A-AI| = 0.
If A = 0 then from above it follows that |[A| = 0 i.e. Matrix A is singular.
Again if Matrix A is singular i.e., |A| = O then |
|A-Al| =0=|A|-A|I|=0,0-A-1=0=A=0. Proved
Example 68. Show that characteristic roots of a triangular matrix are just the diagonal

elements of the matrix.
Solution. Let us consider the triangular matrix.

apn 0 0 0
az) (253} 0 0
A=
as) as aszs 0
ay) asn a3 gy
Characteristic equation is | A -M|=0
ap — }\- 0 0 0
ar aj) an—A 0 0 -0
as as as; = A 0
as as as ass— A

On expansion it gives
(@ - M) (@2 = 2) (an—2A) (@u=2) = 0

A = ajp, dxn a, ay

Which are diagonal elements of matrix A. Proved

Example 69. The characteristic roots of a Hermitian matrix are all real.
Solution. We know that matrix A is Hermitian if
AY = A ie, whereA® = (A’) or [AY.
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Also (AAY = AA%and (AB)” = B'A |
. ; = 3 F ok}
If A is a characteristic root of matnix A then AX = A X. ‘ . )
AN = (AX)P or X0ATS A%
But A 1s Hermitian s AY = A —
vy = AX" = X0AX = RX°X -2)
) PR 74 p 0y sk 3
Again from (1) IXOAX = X2 X = r i AP & )

) = 4 <o that A is real.
Hence from (2) and (3) we conclude that A = A showing freal E
. ictic roots o
Deduction 1. From above we conclude that characterisiic itian
. . ¥ 5 o 1 i
are all real, as in this case, real symmetric matrix will be Herm

ymmelric matri,

- __, —l
For symmetric, we know that A" = A. (B =
or A® = A - A =AasA isreal. Restas above. L
. . 5 2 . o or d ure imaginar,
Deduction 2. Characteristic of a skew Hermitian matrix is either zer p B
number.

If A is skew Hermitian then iA is Hermitian.
Also A be a characteristic root of A then AX = » X.
(i-A)X = (@(M)X ..
Above shows that i A is characteristic root of matrix iA, which is Hermitian and hence
i 2 should be real, which will be possible if A is either pure imaginary OT zero: ' .
Example 70. The modulus of each characteristic root of a unitary matrix s unty.

Solution. If A be a unitary matrix, then we know APA = L

If A be characteristic root of A, then AX = A X. B (1)
AX° = A X)° or X®A® = 2.X°. (2)
XOA9AX = AXOAX = AXAXOX
But AYA = L
XOIX = AAXOX or X°X = AAXOX
(1-AM)X°X = 0.
But X 20~ X®X % Oandhence l —Ax = Oorl = A-Aor| AP = 1.

i.e. characteristic roots are unimodular. .

Example 71. If X is an eigenvalue of an orthogonal matrix, then }i is also eigenvalue.
(AM.LE.TE., Winter 1995)
[Hint: A A" = I if A is the eigen value of A, then A2 = [, A = 1 ]
A
4.26 CAYLEY-HAMILTON THEOREM

Statement. Every square matrix satisfies its own characteristic equation
If|A-AT] = (1) A"+a A"~ 14a, An-2 4 '

| _ --+a,) be the characteristic polynomial of
n X n matrix A = (a;), then the matrix equation )

X'+ X' '+a, X2+,

--*tapl =0 is satisfied b :
¥
ettt usene : 4 Aie.,
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LI 2
Y Nhow | 7 5 N
Wt the manixn A = | 2 /‘ 1|_2 5 N],',
() | 95) ANS g | | ] ‘
Nting e : ] 1YY il
NI Chancteristie equation, Hent® ‘(’/’"f:‘;‘,,’” oAl winte’r 3 |
9
. v . 2 ’
MEH L ayley-Hamilton ‘Theorem for the matrix
I | 2 - 5 e
A = } ’ | 1 2 _ ] ‘
28| P 1 ! 3 5|
Henee evalunte A ! ' - AD 1] 7 -1 -2 %
‘ -
-3 1 ‘
10, v of 6
S ayley Hamilton Theorem to find the inverse of ) = 1 7 -14 -4 l
2 4 Ao/ o 5 2J
Aml-y 0 3
1. |r & L = 2
) A Ay and Ay are the cigenvalues of the matri
- - W ie equal 10
- 3 - ]3 ; then 2 4 Dot M it equd : . )
s ) -21 14 A MI.E'73/5~ winter 1997) ns. (i
 -l6 (i) 2 (i) -0 vy -14 G
T 10~ -1 421 are
12. The matrix A =[ : 'Jis given, The cigenvalues of 447434
2 4 AMLETE Winter 1996) Ans. (C)

(A) 6, 15; (B)9, 12 (C)9,15;, (D) 7,15
13. The matrix A is defined as

I Z 3
A=]10 -2 6
0 0 =3

- Ans. 15,-15,-53
Find the cigenvalues of 3A* +5A*+ 6 A +1.

4.27 CHARACTERISTIC VECTORS OR EIGENVECTORS

d X are two non-zero column vectors such that

Let A be a n % n square matrix and ¥ an -
adypn ‘\l

Y ay) a2 ...
V2 | ay ..o arz, X2
Yn Ayl Apy e ', . '_.‘l P

Y = AX = A transformsvector X to vector Y.
Two vectors X and Y have the same direction. Here we have to determine those vectors
X whose images Y are given by
Y=AX
Corresponding to each characteristic root A we have a corresponding non-zero vector X

which satisfies the equation |A—=AI|X = 0. The non-zero vector X is called characteristic
vector or Eigenvectors.
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(028 PROPERTIES OF BIGENY 1y
1. The cigenvector X of Mt : ORS
b alrniy

3 ) A 18 not un - .
20 AL A A be distinge A ; corrchpt)nd\ng eigen
qors X Xo N, fom ll\u cigenvalues of an n % n matrix then
: VL h I . P AT L LY ”\L"\l" ;8 Q‘t{
; { 1 . - — y
1. If tWo or more —— Y independent set. ossible 10 get linearly 1
. < ¢S are e - H . S5
,ndt‘l“‘““"'“ cigenvectors ire equal it may or may not be p

corr i
4. Two eigenv esponding to the equal roots.
: genvectors X, and X ‘Bive call

“ ’ = 0_
5. Eigenvectors of ed orthogonal vectors if X\ X2 -
O S Ol a Symmetrj . ) : N u
orthogonal. tric matrix corresponding to different €18
. B ) ent
Normalised form of vectors. To find normalised form of Xb\, we divide each elem
by g2+ B +e%, &
; 1 14
For example, normalised form of | 2 |is 2%

4.29 NONSYMMETRIC MATRICES WITH NON REPEATED EIGEN VALUES
Example 76. Find the eigenvalyes and eigenvectors of the matrix

1 0 -1
A=|1 2 11
2 2 3
Solution. |A-A1|=0
1-A 0 =1
1 2=} 1{=0 ie, ¥-6N2+11A-6=0
2 2 3-A
LetA =1, 1-6+11-6=0
111 -6 +11 -6
By synthetic division -1 -5 6
1T s 6 0
/

AN -5+6=0
A-1)A2=5A+6) =0

A-1DA-2)A-3)=0=>A=1,2, 3

I'o find eigenvectors for the corresponding eigenvalues we will consider the matrix equation

(A-ADX =0
1-A O -1 5 0
1 2-A 1 y|=10 wox (]
2 2 3-Allz 0

Eigen vector corresponding to eigenvalue A = 1
By putting A = 1, the matrix equation (1) will become
00 -1}|x 0

-z2=0
11 1jly|=]0|= x+y+z=0, Letx=k
2.2 2}z |0 k+y+0 =0

y =-k

A
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;/ Of’p[{/(f 5(7 cam el pele %;.i/m— azua/ﬁ?sn
5_214 3&,-—41,"4:0
SXa -rC.QJL —f—éZ;_—'é =
8%z + &Yy +2Z3-2%°
| 2 2 b b
-8 b 2 —e2
A = e 5 3 "'4
3 2 A
B 2 2
= 5(H-26) —3(b+48) =24 ((8+1&)
= 5(-325 5(54)-4(34) .
= —/lbo —1622 _ 134 ‘
/A = —-45:8
A, — 2 —‘4 -—l, v
2 b e
JA B Ny
-~ 2(~y |
| LHIR )+ L (—h+3E )4 (4H-36)
= FODF 4052, 44[-.5;2') P
s (R : R .
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(AL 4 ™ I 147 il F e b 7 NS OGRS IR R TEERNSNSACALS A=A RN e
o g s S h SRy &7 E2E §
‘g " o .
‘ /\ 2 p—t . {' ) ('
{ a ,

-5 - o

_l-4s) — w4l 6T hr)
5/—~/.-'2—r/.r)-/¢;( 58 )

sied & 1/(—5'4)~L/(§1f)

wd/&-nz/é

| .
; —m
|

-—

5 >

-

| =

g b -2
3£)~3(«é—4&4 .-z,(zg.f/éj

= 5(-4%*
5% ) —4(34)

. 573N =3 (-
= Jaa+/;é-/3é

—

A — Az Lz <4
ks /% ) Z/ ] ,/ — @
5% O.-5529
= ' = =
256 A’” ? /4;9




2%, 2 yalwe Sub £n e @ -

/
O 5589 _ 29432 _ 0.4059 . }
DE 43 (5 ¢ “.5F |

f = 2. (23
2./)822 = 2.(83 = 2.(876 17/

2 Solve é/ troomer aude é/f& eqpualbibn .

bxi+ 2y —27,-4 =0

bz, F+ LYy 427, -6 =

—RXz 2y, s, _Ip O
o 3 =2
?%éfwﬁ = é

L 4 2 5
=2 2 )8

- b e
4= 6 4 =z
-2 -2 £

b(32+24)2(H8+4 )2 (—/2+&)
=276 —lt0oL+(-8)

ENERTy

L\

-2 __17

ZX ;= 2
<4 o2 e i
—2 — !B

= R2(=36+48)r2(-T2+12)c2y(3:2-4)
:02,(,/.?_)7—,2,[—{:0),_4(,2‘9)
- 2 4H- /20 ~-/72

= 2L 222
/;, = —.2@7

A_:_: é L
6 2 =
-2 B — &




L (-3C+aED TR (—1P2-)a) — L4 (4H8 45 )

A (/’2)7-,7_[—/.10)—4 (52

1

~.2 - 240 —227

\\

. TJ2-44L45
{ A, = “374

"2 -—
Ay = | £ K
73 B =5
-2 2 _ 18

. L(-T2H12L) o (108 -/2) _jz,(,‘,z_*g)
= é(——éO)-—,,.a(;l.za)-J,(;.o)
— 3bo rarbho- &2

= -**4‘/0""72’}/0

Ay = - 200 /
PP s =24 , A'; — 205 ) A.’L:“37b > A_B = — oo
& o = e E =l
x . s | i
=S el (D
—208 -376 oo 24
= =L == - 208  _ g bbbb
—208 =4 24
'y — '} =) j: ______--‘37é = ~/.§-‘éééé
S 24 22
Z - L =z 200 , 532232
—2p0 4

=24
x.y.z l/a,éu—& S e o5 e,}n .

- Lbbb- _ /5 L6bb _ 8.2333 |
2oL - e < - } 4217
—_ 76 -2 oo

—0.04) = —0-04)=-©.O0L]| = _o.ol-f'/

o e g
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31 Sodlve by et skt 7 ‘

tyrz =

BxAtEy)bT =4
Pt 2y —3Z*" /7

y%-{j—&z—/ =0

32+5j—}é1-4 =
T2t 2 y—33.~I7 =2

&/ﬂaé;);; ’ / / ok
[3 5 b -4
7

2 -3 =/7

_ ] 1
A = & B &
7 2 -

,(_/;_/Az)',['7_5'4)-#/(5—4’5)

—
-—

=1(-27)-1(-63)>%1(-39)
= ~27+6 3-329

= 1(-10.,2.—/,2)—/[—95-4(9)_/(—/5‘—/4)
= 1 (=114) = (=77 = 1(=27)
= —/144+77+27

= — 12 Flog

A;:-—/o

& A
A L3 N
? 3 a7
= tl-toa_toy_1(-5/+26)-1(~7-5%4)

= V(=114 )= 1(~150=-/(~63)
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! = 4 ' "’ - : }lo

-

| W

»
(‘
-

] |
5 -4
L =17

o )
A3« 3
9
- 1(-S59 8- I(-5/t36)-1(b-45)
= | PP 7Y il )= =2Y)

e B T e ol

= —77+5%

[22= =22/

A =
= o A _ |
==Y _ =z _ S
> = [ — !0 -
S THICE ——= = 5. 2523
— /o ,

36
=z _ / =) = = —=23 = 7- ééé’é’
=3 3 L

-23

Fb oy, z yalues L P &+

#7666 46

-

+3 3333 )2

346 S .23
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Yalhi

&©&-32323 = ©0-3333 = ©.3333% =_D-3333/
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Matriceg

1ol YESy Eigen- . of order n.. Suppose there i -

ipoh VA atrix i
81 Eige? (2] be a squarc m x .such that the action of A on x ; -
- Let A% 7Y n vector A ST ultiple o o e,
enal nonZere Com\'?;g o vector which 1 justa multiple of X, iy is
W | 2
::mam\ product B AX =AX
n

cds, the transformation representegq b
here A 15 : vector X by ascalar A. The vector X je the?;

W o i hematrix A. l is ca]]ed ar.l Elgen .value of

) f thfor X . The problem of finding the eigenvecto,

he eigenVeci™ = " ~1ed the eigenvalue problem.

1

matrix is cal . -

f E-fanvector A nonzero vector X is called an eigenvecy,,
of E18€ ’

other wO

corresponding Lo
and the eigen

Dern ' mber A such that AX=AX . .
of a matrix f i t:;;’; Snae?;en value of A corresponding to the eigenvector
Here A1sC
o vivc;c;c:,:. AX =AX =AIX, I being a unit matrix.
or ’ (A-ADX= 0.

i ‘ igenvalue problem.
This is the matrix form of an eigenval
Since X # 0, the matrix (A —AI) 1s smgulgr, so that
'A.—'M';Oﬁ ) . (1)
Equation (1) is called the characteristic equation of A .The eigenvalues

are just the roots of the equation obtained by c?xl.)anding.the determinant in Eq.
(1). The n-roots Ay, A, ...A,, of the characteristic equation are not necessarily

all different. ;

Example 1. Determine the eigen values and eigen vectors of the matrix-

A=1[3.14
026
005

Sol. The characteristic-equation of A is IA-ALI=0 ie.,

3-A 1 4 | _,. B B iy
0 2-2 ¢ | =9ie-A=-2)A=-3)(A=5)=0

0 0 5_2 - ll=2,3Q=3,AG=5

These are the eigen values of A .

'I.‘o determine eigen vectors let us consider the eigen values one by one.
(1) When A} =2 the eigen vector X is given by (A -2 X, =0

130

——— e mm————




Y L€
-"'

LA S

L al i 0
006 GLil=lo
€ 001 s 0

- rank of coefficient matrix being
W »

) 2. the equation will have only
1 hincarly independent solution.

These are cquivalent to X} + x5 + 4x, =0
The last two give x3 = 0. Then first one gives Xy +Xx9=0.
Take x; = 1, thenx; =—1 and x3 =0.

Hence X =G 1— 1 C, being a scalar.
-1
el
(if) When A, =3, the eigen vector X, is given by (A — 3Y) X, =0

0 1 4}{*1| [o
ie., 0 -1 6||xxi=|0
0 0 2||x;| |0

These are equivalentto  x, +4x3=0

—Xy +6x3=0
2x,=0
giving x3 =0, x =0 and x, is arbitrary, say x, = 1.
| X,=C, ]_ 1 C, being a scalar.

Then _ : 0}l
; o
(iii )When A5 =5, the eigen vector X3 is given by (A — 5I) X4 =0

. 2 1 4][x] To
ie., 0 -3 6||x|=|0
0 0 0fjx| |0

These are equivalent to —2x; +x, +4x3=0

—3xy+6x3=0
giving Xp=2xq= %xl, i.e., 2x;=3x,=6x,y
Take x3=1,sothatx;=2 and x; =3
Hence X3=Cy i C, being a scalar.

1




A echanics and Mathematicqy M"”lod
f
i ‘

d yon values and Ill’f"“l”-"('(/ eigen Vectoy 7w,
" y  Find the i8¢’
Example & S .
01 |
1 E
0 ’_' ?
Let A=/0 1 :
QO'- O l _J
[1 0 0 1 0 0
A - Al = o 1 1|—- Al0 1 O
o 1 1] 0 0 1
[1-A2 0 O
=l o 1-A 1
0 1 1— Z.J
The characteris’t/ic equation of A 1s_ » o 0 O
A—All=] 0 1-A 1 |[=
A 0 1 1-A

1-2[1-2)*-1]1=0

Le.,
ie (1-2)A*-20)=0
i A(I-A)(A=-2)=0
i.e.’ A=0,1,2.

Thus the eigen values of the matrix A are O, 1, 2.

Eigen value equation is

(A-ADX=0 (D)
For A =0, Eq. (1) reduces to

4-0 0=~ (*1]| [0
011 X2 =10
01 1 X3 0

This is equivalent to the following equations
.XZ + X3 = O
XZ + X3 = O
Solving these €quations, we get

xl =O,x2=—x3=k(say
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If the eigen vectors be normalised to unity, then 1 X, | = |
vy )
or \Jrob+k-+(_k)2]=\0rk= ;
N(2)

.. Normaliscd eigen vector

_ 1 =1
i~ {0 Tz W)

For A= 1, Eq. (1) reduces to

0 0 O} l|* 0
001XZ=0
01 O0]ixs 0

This is equivalent to the following equations
x,=0
x3=0
- X,=1{1,0,0}in normalised form.
For A =2, Eq. (1) reduces to

-1-0 of{* 0‘\
0 -1 1{{x»|=|0
o)

0 1 —-1]ixg
which is equivalent to the following equations
—x;=0
—Xn +X3= 0
x,—Xx3=0

Solving these equations, we get
x| = 0, Xa = X3

he arbitrary scale factor, the eigen vector corresponding to

Within t
A =2 is given by
X3= {Xl, X2, X3} = {0, k, k }

For | X5 1 normalised to unity

— 2 2.—.'_ [ — 1
N+ +k2=1 ie, k=75

1 1 : )
X3= {O, qa; 72—} in normalised form.

Thus the normalised eigen vectors of the given matrix A correspond-

ing to the eigen values 0, 1,2 are

1 1 | T | \
{0, WT) - ?2-} .{1,0,0}, {0, Gx -Ji‘} respectively
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8.2. Cayley-Hamilton Theorcm | | | .
Statement. Every square martrix satisfies its own chg ractey;s,,
OR ic eq"‘u,’,
If IA-—A.II=a0+a,l+azk2+..,+anln=0 n
be the characteristic equation of a square matrix A, thep
ay I+ a A+ay A%+ ... +a, A"=0

Proof. The characteristic polynomial is

| A —Ml=ao+a]3\.+azl2+ .

g An
lement of characteristic matrix (A — Al) is an ordinary by (1)
T "omiy

Eache
of degree n (at most). Therefore the co-factor of every element of |5 A
an ordinary polynomial of degree n -1 (at most). Consequently eac, o nI, | is
€nt

of
; B =adj (A — AI) |

is an ordinary polynomial of degree (n — 1) (at most). - (2
B=adj (A—-AD =By +BA+BA%+ -+ B, _ ;A" -

Here By, By, B3,---By_; are all square matrices of the same orge, .

omials in the elements of A.
|A —AIl T

whose élements are polyn
"Now, (A —AD adj (A — Al =

Using Egs. (3) and (1), we get
(A—AD [By+By A+By A%+ ...+ B, _; A"

=(@p+a;A+ay AP+ ... +a, A1 --(4)
Comparing the coefficients of like powers of A on both the sides, we get

ABj=apl

--------------------------------

--------------------------------

Premultiplying these by 1, A, A2 A3 ... A" in order and adding,
agl + a;A +a,A%+ --- +a A" =0

This is Cayley-Hamilton theorem.

Corollary. 7o determine A ~ ! by using Cayley-Hamilton theorem.
Let A be a non-singular matrix of order n so that | A |#0.




MatriCeS

According to Cayley-Hamilton theorem
agl + ajA +a,A2,
The charactenstic polynomial is

IA—}I|=GO+OI l-{-azkz.{.....anln
For A =0, Eq. (2) gives lAl=aq,.

"+ a, A" =(

S <. 00¢0
Now dividing Eq. (1) by ag, we get
a a
F=w|=L & 2L P03 a
| aoA+ A +"’+£A"]
Pre-multiplying Eq. 3) by A ~ ! we get
a a
: 2, a0A+---+-A" 1

Example 1. Find the characteristic equation of the matrix

find A~ L.

that

135

(1)

(2

sk )

—(4)

1 23
A=|2 -1 4
3 11
and verify the Cayley-Hamilton theotem for it. Hence or otherwise
(1 2 3 1 00| [1-2 2
Sol. A—AI=|2 -1 4|-A|0 1 0|l=] 2 —-1-=-2
_3 L | 0 01 { 3 1
I-A 2 3
STA-ALI=] 2 —1-A 4 |=-A+22+18L+30
3 1 1-A
Hence the characteristic equation is
. ~A3+22+181+30=0

Now, in order to verity Cayley-Hamilton theorem, we have to show

—A3+A%2+18A+301I=0

(1 0 O 1 2 3
HereI=|0 1 0O}, A=|2 -1 4
001 3 11
1 2 311 23] [14 3 14
AZ=|2 -1 4|2 -1 4|=|12 9 6
L311311 8 6 ¥
14 3 1411 2 3] fs62 39 68
A3=A2A=|12 9 .6{|2 -1 4| =(48 21 78
: 8 6 143 1 1 62 24 62

s —A3+ A2+ 18A +301

It

(N



rfechan jcs and Marnemaiical Mefho
' ds

| - I 23 1 0 0
’s(\ | | '4 ‘;
2 39 08 l,‘ g O 4 1812 —1 4 +30(0 1 o
w2 L 31 0 0 |
.’S _J' (;’ 8 O 14 .
{(».‘ .
o 0 ()
o 0 0l=0
L 0 | -
Cayley - Hamilton theorem 15 verl
Hence &3 2 -
/‘ﬂ'A": 30I-A>+A +18A
mn
. I"‘L(A3—A2—-18A)
— 30 |
1 -1 we get
Premultiplying the above equation byA we g
1 A2-A-18D)
e A A
2 30(
R I R L
_i_L]li2 0 6[=35]2 -1 4|30

ety 4 P 1
~ 30 30 30

10 8 2

e Bl . S
A~'=| 39 “30 30
3 5 5

30 30 30

2—. [llustrate the Cayley-Hamilton theorem for the matrix

Example
1 20
A=|2 -1 0
0 01
1—-A 2 0
IA-ALlI=| 2 —1-A2 O
0 0 1-A

= —5+50L+A% =23

Hence the characteristic equation is ,
' _5¥SsA+A2=A%=0

We have to show that = — 51+ 5A + A2-A3=0

Now, —35I+5A +A%—A3

-5 0 0 5 10 0) (500
=] 0 =5-70%+}|10 -5 0 |+]0-5:0 |+]-10
0O 0 -5 O O 5 0 0 1
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To find A~ 1.
Premultiplying the atove equation by A~ !

Theorems on eigen values and eigen vectors
Theorem 1.The eigen values of a Hermitian ma

137

ample 3. Find the characteristic equation of the matrix

Ex
2 -1 1

A=|-1 2 —|
1 —1 5

J verify that i 1s satisfied by A. Hence find the inverse of A
aracteristic equation of A is

sol.'l‘hccl
2—-A -1 1
IA—=All= -1 2-A -1 =0
1 -1 2-A

—2A34+6A2-9A+4=0

3 _ 622 _
A’ —6A“+9A—-4=0 (1)

15€.
We have to show that

A3_6A2+9A —4I=0

, 6 =5 5 22 =21 21
A2=|-5 6 5| Ad=|-21 22 -21
5 -5 6 21 =21 22

. A3_6AZ+9A —41

[ 92 221 *%21 R e P R M| 1 00
21 22 =21|-6|-5 6 -5[+9|-1 2 -l —_4l0 1 0
21 21 22 5 =5 6 T LSt 0 01
000

0 0 0[=0

000

A3 _6A2+9A -41=0
I=;:-(A3—6A2+9A)

, we get

A-‘:%(A2—6A+9I)

[ 6 -5 5 ) 6 -6| [900
_1l_5 6 -5|+3| 6 12 6|+5[0 9 0
4l 5 5 6 _67°. 6" =12 009
31 -
=113 1
4111 3

trix are all real.

roof. For a hermitian matrix A
AT=A

Here, A t is the transposed conjugate of A .

1
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I ISP—— value of a Hermitian matrix A. The, by d(:r»l'ac.d4
ts a vector X # 0, such that iy,
there €xiS AX=1X.
premultiplying Eq. (1) by X 1, we get A1)
X1 AX=X1 AX = AXTX
Taking transposed conjugate of both sides in (2), we get (2)
X+ AX)t = A X1X) }
o Xt At (XDt =4+ XTXDi
or XTATX =2A#X7X
or X fAX = A+X7X : (-Af= A)
X1AX = A+XiX ( using Eg. 1)
or - A-A%)XiX=0 -3)
As X is an eigen vector X#0; .. XiX#0 )
Then Eq. (3) gives, '
A-A"=0
or A=A"
This means that the conjugate of A is equal to itself. This is only possible

when A is real.
Thus the eigen-values of a Hermitian matrix are all real.

eorem 2. The eigen values of a real symmetric matrix are all real.

Proof. For real symmetric matrix A,
A*=A and AT=A

AhH*=A ie,At=
Thus real symmetric matrix-is a hermitian matrix.

By Th. 1, the eigen values of a#hermitian matrix are all real.
Consequently, the eigen values of a real symmetric matrix are all real.

rem 3. The eigen values of skew-hermitian matrix are either zero

w -_
or pure%y imaginary.

"Proof. For a skew-hermitian matrix A, _ :
. Af=-A (1)
Let X be an cxgcn vector of A comresponding to eigen value A Then
| AX=AX @)
or - @A) X=X ‘ 3}
Now, (A)t=i*At=—i(—A) using (1)
: (At = '

This proves that 7A is hermitian matrix.

According to Eg. (3), i\ is the eigen value of hermitian matrix 7A
corresponding to the eigen vector X. Therefore, by theorem 1,

i\ is a real number. It follows that Ais either zero or purely imaginary

number.
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11|/0M","?,“—‘ T:,:;',) g.cn values of a real skew-symmetric matrix are either
"u,r,)' 'ml‘.c =

n orf [ Fora real skew- symmetric matrix A,
A'=AandAT= —A= ATy = _A* = _ 5
4 At = —A = A is skew-Hermitian,
= By Th. 3. the result follows.
-3 ® -
Theorem5. 71,3- modulus af each eigenvalue of a unitary matrix is unit Y.
proof. For a unitary matrix A,

AtA=1 A1)
[ et X be an cigen vector of A corresponding to eigen value 1. Then
ARSAR A2)
Taking transposed conjugate of (2), we get
(AX)T =(AX)t
XtAt=2+Xt .13)

or
post-multiplying (3) by (2), we get

(XTAT) (AX) = (A * X1)-(AX)

or XHATA) X =2 = XX

or XiIX = AA+X1X using (1)
or XiX= MA+X1X
or XX(1 -2AA" =0 (4)
As X0, XiX=#0
Eq () gives, 1-AA"=0 ie, A =1A%1=]

: IAM=1

i. e., the modulus of A is unity.
eorem 6. The eigen values of an orthogonal matrix are unimodular

(i. e., of unit modulus)
Proof. For an orthogonal real matrix A, we have

A*=A (1)
ATA=1 -(2)
Taking complex conjugate of Eq. (2), we get
(ATA)*=T"
or AD*A*=1 (- I*=))
or AtA=1 using (1)

= A is unitary. By Th. 5, the eigen values of a unitary matrix are

llllimod - ¢ .
unimOd:Iir: Hence the eigen values of a real orthogonal matrix are

Valueﬂ?f% Any two eigen vectors corresponding to two distinct eigeri -
a Hermitign matrix are ortho gonal. . 7
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140 [ Let X;. X, be two eigen vectors corresponding 1, l:vf::’.h y
eigen :::::\ A;. Ay i»f a.hermitian matrix A. Then 'Snncl
' At=A
AX| =7 X (1)
AX, =1,X, g)
From Th. 1, A; and A, are real numbers. ~3)
M=A T =0T )
Premultiplying (2) and (3) by X7 and X, respectively, we get
X, AX =1, X,1X, -
X 1AX; =X 1X, -
Taking transposed conjugate of (5), we get
X, TAX )T = (llszxl)T
ie., X, TATX, T = }v] * X1 XNt
s Xt ATXo =1, X;1X, using (4)
< ATAK S X TR using (1)..(7)

Comparing (6) and (7), we get
AMX X =X 1X,
i e., M -2 X(1X,=0
Since A; — A, #0, otherwise the roots will not be distinct, the only
possibility is that X;1X,=0.
It follows that X, X, are orthogonal.

Theorem 8. Any two eigen vectors corresponding to two distinct eigen
values of a real symmetric matrix are orthogonal.
Proof. Let A be a real symmetric matrix. Then

A=A (1)
AT=A (2)
Taking transposed conjugate of (2), we get ;
(AT)*=A"
or AT=A using (1)

=A is Hermitian.
By Th. 7, the result follows,

Theorem 9. Any two eigen vectors corresponding to two distinct eigen
values of a unitary matrix are orthogonal.

Proof. Let A be a unitary matrix.

Then AtA =1 (1)




rices .
¥ AL X, be (wo cigen vectors Cum.:sponding to rwo disunct eigen
lpl;" ‘;n«' % of unitary matrx :\. Then
r AX; =MX, (2)
AX; =X, Ly
Taking tmngposed conjugate of (2), we get
(AXI)T = (Alxl)f
or X, tAtT=h X (4
post-multiplying (4) by (3), we get
X, AT (AXp) = (g "X 1) (X))
or X, T (ATA)X; =M WX X
9
of X, 11Xy = Ay AX 1Xy using (1)
or X, X, =A X Xy ¢ Xp=1X5)
or (1 -4 M) X 1%, =0 (5)
But A being a unitary matrx, the modulus of each of its eigen values
is unity, i-€- A kA =1
(1= A= M~ Ap) =My (A —A) #0
(since A| # A2) ..(6)
From (5) and (6) it follows that X;1X;=0
i e, Xy and Xpare orthogonal.
Theorem 10. Eigen values of a matrix are invariant under a similarity
transformation.
Proof. Consider two similar matrices A and B, related through similarity

transformation such that
=P AP

quation of the matrix B is | B—=M1=0. Here, A is

The characteristic €
an eigen value of B.

ie., (p-lAP-AM1=0
or p-lap-pP-1MPI=0
or 1p~t@A-A)PI=0
or (P~ '11A-AMIIPI=0
g: IP-lPIIA-MI=0

IA-AI1=0

Thi i : :
is relation shows that A is an eigen value of A also.

This proves the theorem.




42 Mechanics and Malhrmam-,,l M
'

T pen values of a diagonal matrix
corem 11, The etge f A @are P"'('ln-l). ]/

elements in the diagonal.
Prool. et A= (hug' I(,“. Ayy, (l”"l

Then (A=Al =diag.[apy =X, ayy = A, Upy = A
The charactenstc equation | A = AL =0 gives

((l“ "l) ((122‘— ;\-) e (a"""l):()

A =a)1»ay - a,,

ayp, ayy - a,, are the diagonal clements of A. Therefo
values A of a diagonal matrix are the elements in the diagonal.

L}). Diagonalization of matrices.

/
/

¢ the eiggy,

Let ;{ukz “*A, ben dis.tinct. cigen values of a matrix A and
—=.. X, bethe n corresponding cigen vectors.

Let X; be the column vector given by

- (1)

Consider a matrix P whose column vectors are n eigen vectors such that
Xn X X,
X X Xy,

£= =[X;] ~(2)

Suppose that D is a_diagonal matrix such that
(A4 0 0 0

... 0 | :
D=0 0 & ... 0 =diag[ll,kl,...ln] ..(3)

00 0 ... A
MXp MX, . X,
Then PD = A\ Xp; ApXs, ...\, X,, =[AX;] ~(4)

(no summation over Jj)

=(AX,, AXz’ .- AX)) (expressing matrix as vectors)
=A (xl’ XZ, e xn)
=AP.

-(3)
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[fPbca non-singular matrix, then premultiplying (5) by p- 1 we
? D=p-!ap o =
jalti lying A by P—l and o £ “-(6)
us, premultipiy!! postmultiplying b
. m::; matrix wh9se filagonal elcmepts are ¢he eigen \yrlall?cs?’lf;;}s‘”e get lhe
dli;;—e 1 the diagonalization of the matrix A. process is
ca 3 4
Example. Let A= [4 —3]

The characteristic equation is

Ayt |3—=AT 4
A Ml—\ A . g -0
I. €, —9+lz-16=001'l=i5

ie, M= —5_ and A,=S5.
The corresponding eigenvectors are easily obtained :

-1 2|
Let P=[ 2 1]

_1_;1 1 =2
L s 5[—2 -1]
1[1=2]1[3 4] [ +
-1 sl
Hence, P~ " AP= =75 -2 -1] |4 —3] [+2 +l]
_ 11 =2l[ 5 10]
5 L—Z -1 -10 5
__1l25 0|_|50
T SL_O =25 05

Ay O
{55
Practical Method of Diagonalization. To reduce a given square matrix

A to diagonal form, we first write the characteristic equation f9r thc.manix
and evaluate the characteristic roots Ay, A, ... A, Then the required diagonal

matrix D of A will be
(A, 0 0 ... 0]
: 0 M0 .0
D=|0 0 M ... 0
% 5o

Example 1. Diagonalise the following matrix
cos® -sin@ O
A=|sin®@ cos@ O
0 01
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cos® —-smnB 0
_ ot A=|sinB cosO O
.\OI. l.Lu O O l

The characteristic equation Is
cosB—-A —sinB 0
sin@ cosB-A 0 | =0

IA-M 1=
0 0 1-2A

(1-2)(1-2kcos8+A%) =0

I €.,

o 2c056i\[400526—4 .
Charactenistic roots are 1, >
ie., l1,cos8+isinB

ie., 1,78
A=e® hy=e"8 A =1 (say)
.. The required diagonal matrix is

ele 0 0
D=0 ¢ 1® 0
0 0 1

8.5 Matrices in Physics
(1) The Rotation Matrix. Let (x,y i
' ! : ,¥» 2) be acartesian coordina
1n a three-dimensional space. Let u = { up,u,} be a vector in the xy-[tjas::tem

Consider a rotation of the coordinate system about the Z- axis through
ug

Ifthe same vectoru h u
as com onents u,” t re 1V
, p 14Uy lati e to the new System,
ul:-—ll] Ccos 9+u25in 0
uz—-MISiﬂe+U2COSO (l

[u,: =| €0s8 sin@| |y
Uy —sinf® cos@ 7 ..(2)



