UNIT IV
Sound:

Equation of motion for a body executing angular simple harmonic oscillations—Definition of free,
damped and forced vibrations — Theory of forced vibrations — Resonance — Sharpness of resonance —
Fourier's theorem — application for Saw— tooth wave and Square wave. —Sonometer — determination
of A.C. frequency using sonometer
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11.1. SIMPLE HARMONIC MOTION

Let P be a particle moving on the circu
of radius a with a uniform angular velocity ®
centre of the circle.

A perpendicular PMis drawn from the particle on the diameter
YY of the circle. As the particle P moves round the circle, the foot  y.
of the perpendicular M vibrates along the diameter YY. Since the
motion of Pis uniform, the motion of Mis periodic. As the particle P
completes one revolution, the foot of the perpendicular M completes
one vertical oscillation. The distance OM is called the displacement
and is denoted by y.

The particle moves from X'to Pin time ¢

ZPOX = ZMPO =6 = ot

mference of a circle
(Fig. 11.1). Ois the

From the AMPO,
. OM
sin @ = sm(ot=T

or OM = y= asin ot
OM s called the displacement of the vibrating particle.

The displacement of a vibrating particle
at any instant can be defined as its distance from at-
the mean position of rest. €
The maximum displacement of a vibrating g 0 i i g
particle is called its amplitude. /2 - 32 2
Displacement = y = asin wt (1)
Fig. 11.2 shows the changes in the -ar it
displacement of a vibrating particle in one Flg-ll_z_)

complete vibration.
Velocity = v = % = ancos ol = my/(a’ - y*) 0

d2
Acceleration = EEZ =-aw’sin ot =- oy )

Thus, acceleration is directly proportional to displacement and directed towards a fixed point
This type of motion is called simple harmonic motion.
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Following are the characteristics of simple harmonic motion:
(1) The motion is periodic.

(i) The motion is along a straight line about the mean or equilibrium position.
(iii) The acceleration is proportional to displacement.
(iv) Acceleration is directed towards the mean or equilibrium position.
Definition : If a particle moves in 4 straight line, so that its acceleration is ahways directed
towards a fixed point on the line, and is proportional to its displacement from the fixed point, the
particle is said to move with simple harmonic motion.
Eq. (3) can be written as

¥
— +o’y =g -(4)
This is the differential equation of S.HM.
The period=7 = %
)

The frequency =n = i=£.
T 2=x

Examples of S.H.M.

1. The vertical oscillations of a spiral spring suspended from L

arigid support, and loaded at the lower end. This is linear \
type of SHM. i

2.  The vibrations of a simple pendulum. This is angular type
of S HM.

Phase : Consider a particle starting from S and moving on the

circumference of a circle (Fig. 11.3). ZSOX=a. The particle moves
from S to P in time 1.

ZOPM = (ot + a).
Displacement y = a sin (@f + a). Fig. 113
a is called initial phase or epoch of the S.H.M.
The angle (@7 + a) is called the phase of the S.H.M.

112-’9155 VIBRATIONS OF A BODY

When a body, free to oscillate, is displaced from its equilibrium position and no extemnal driving
Orresisting force is acting on it. it continues to oscillate_wnth aconstant amplitude and its own natural
Jrequency. Such vibrations of a body are called free vibrations.

< T
n
w

S 95 e/

Example. A simple pendulum oscillating in vacuum. When the bob of simnl

= : bob of simple pendulum
(in vacuum) is displaced from its mean position and left. it executes simple harmonic motion.
The simple pendulum vibrates with a time period T given by IR -

r —
T=2n‘j:.
g

The time period (7) depends only on the length of the
10 gravity (g) at the place. The pendulum will continue to o
amplitude for any length of time. The amplitude of swing
10 loss of energy by friction or otherwise. In all similar
vibrations.

p<.:ndulum (D) and the acceleration dye
scillate with the same time period ang
remains constant. [n such cases, there 1s
cases, the vibrations will be undamped free

E e A .
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—— 2 Mattgy
/D/ fferential Equation of an Undamped Vibration
Let m be the mass of a particle exceuting S.H.M.
Kineti ' I dy
metic energy of the particle for displacement y = E dl

2
At the same instant, the potential encrgy of the particle = E L

Here, K is the restoring force per unit displacement.

I (dyY 1,2
The total energy at any instant = —m (—) +—-Ky”“.
By atany mstant= 5 " ar) T2
For an undamped harmonic oscillator, this total energy remains constant.
’) «
%‘ —Kv = constant 1)
N >{&fﬂ“c 3\\§atmg Eq. (1) with respect to time, 4.
d ' o
12 + K = 0 o
ar Y @)
oo ad
2 P "V . ‘ ) ‘ ' ’ f wesl
a* \m , o (w[\ - ol &)
dZy + Aﬂ
or - +0’y =0 . ’ e ’ @
Iy R — 3
(¥ , K
- Here o ) m.’. B ; .
\/ / : ‘ m
r -

JThe sviunon for Eq. (4) is
y =asin (0t —~a)

¢ \,;\ , _ |
’ [ )

2n :
= . 3

o 2n
' iod of vibration is T= — =
' rzi"l'hepeno of vi 'ralonls ° (K)
Vv sz}
J . ' . m

Thus, in the case of undamped free vibratitons, the differential equation i§

v
A - .
\\ ot (K‘)-V e , -6)
' dr* m e

= _ T -

ya/D}MPED VIBRATIONS .~ —_— -
When a body “’“‘“""W simple harmonic vibrations is Icﬁ to itself, the amplitude of vibrations

graduaily decreases A sees e the cbeatens compleis®dic out, This is because the motion

of the body is resistod by ey rrctionad \:rtuclls. Retarding forces are called into play due tf) the

\is-osity on inter Al it G e 1'”}' the resistance of thear These torees reduce the amplitude
andd thas damp the o0 oo Suchesellanior s ofa bods e called damped v ibrations.

B
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Example. ln actual p]actice \"Y €S In air m
. . ’ he i r\ m i i . ' le of
frving dCCl cases C()“ti“uously With .timc ]:‘ l yl ' ‘i t i e‘ l ’ tci h ' . l ll[
S\ - . . - l]]a [ i i 1 ' ‘ :
‘.r:‘[, da"lped V|b[atlo”s. Ihe dlssipate l lhe OSClllatlons dl out. SU 1 u : "

i surrounding medium, d energy appears as heat either within the system itself or in
Differenﬁal Equation of a Damped Vlbratlon
Consider abody of mass . [ et y

Jinstant be the displacement of the body from the equilibrium position
atan '

The instantaneous velocity is ﬂ
dt

When a body is oscillating in a resisting medium, two forces are acting on the body.

I Arestoring force directly proportional to the displacement y, but acting in the opposite
direction. It may be written ag '

-~ K, .
Here, K is the restoring force per unit displacement.

2. A fricti.onal_(or damping) force proportional to the velocity, but opposite to the direction
of motion. It may be written as

&
CCar
Here, p is a positive constant depending upon the force of resistance.
Therefore, the differential cquation in the case of free-damped vibrations is,

~

d'y d)
m—% =-Ky-p>.
dt dt
d’y dy
m—=+ Ky+p-— =0
ar a7
)
z K g
or i).). + (i)ﬁg k. !(_}y ‘::1 0 ) .- ...( l)
dir \m)dt \mJ)
K
Put K _2 and —=k".
m m
Then LY e, Ky =0 , -(2)
’ d[z dt
Genciol Solution. Let us try the solution,
y =Ae" ' -
. dv dzy 2 .m
I'hen, -= = Ape” and —5 = Ap°e -
! ot 4 dr’

Substituting these values in Eq. (2),
Aplet + 2hsipc? 4k A =0
or prt 2bp k2 =0

or p::—[)i’\/(zzwkz)
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The general solution is ey
—b-(b" -
y = gt r @ -k 4 Be! ¢

_ (- kM
= e bAe -kt . g~ V! ]

If b2 < k2, \/(b* — k*) becomes imaginary.
’(bZ _ kz _ ,—l(kz _bz) - IW = l[.))
Here i= \[—_TandB=\/(k2—b2)

The solution becomes,

e [4e + Be ] _
e [A (cos Bt + i sin Br) + B (cos Bt —i sin BA)]
e [(4 + B) cos Pt + i (A — B)sin B1]
Put(4+B)=Csindandi(4—B)=Ccos?d.
y = Ce'sin (Bt + 8) «(3)

Here C and § are constants.
Eq. (3) shows that the motion is oscillatory.
The amplitude of oscillation is Ce™".
The amplitude is not constant.
The amplitude decreases exponentially with time.
Finally, the amplitude becomes zero after a long time (Fig. 11.4).

y y

T
W W

Damped oscillations Undamped oscillations

y
Y
y

Displacement

Fig. 11.4
The period of damped vibration is
_2n__ 2 2n
= T
k“—b K ~ i
m  4m?

The period of damped vibration is greater thap, the period of un damped vibration

1}({.)=ORCED VIBRATIONS

energy. If some external periodic force is constantly appli tarding forces and thus loses
under the influence of such external forces. Such vjp

When an external periodic t"orce is applied to
ws a tendency to vibrate with its natural freqyep
to impress on the body its own fre(}iuency of vibrati
out due to frictional forces. The body finally vibya

external periodic force.

rations of the body are called forced vibratiops.

a body executing damped vibrations, the bedy
Cy. But the external periodic force applied trieg
On. As time advances, the natural vibrationg die
¢s with the frequency of vibration of the applieq

sho
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The amplitude of the forced vibration of the body depends on the difference between the

natural frequency and the frequency of the applied force. The amplitude will be large if difference
in frequencies is small.

Resonance : The particular case of forced vibration in which the frequency of the applied
periodic force is equal to the natural frequency of the body itself is called resonance. When the
frequencies are equal, the applied force helps to increase the amplitude of the body at each step. So
when resonance occurs, the body vibrates with a large amplitude.

Examples of Resonance : (1) A vibrating tuning fork is held just above the open end of a tube
containing water. If the level of water in the tube is gradually lowered, the length of the air column
increases. The air column is thrown into Jorced vibrations. When the natural frequency of the air

column is equal to the frequency of the tuning fork, a very loud sound is produced. This is due to
resonance.

(2) Another phenomenon of resonance is the tuning of a radio receiver to a desired broadcasting

station. By turning the tuning knob, the local oscillator in the radio continuously changes its frequency
of oscillation. At the point when the fre

quency of the oscillator is equal to the frequency of the station,
the sound is maximum.

(3) The shank of an excited tuning fork is pressed on the sounding board of the sonometer.
The length of the sonometer wire is adjusted so that its frequency is equal to the frequency of the

tuning fork. Now, the wire begins to vibrate with a large amplitude and a paper rider placed on the
wire is violently thrown off. R

Differential Equation of Forced Vibrations

Consider a system oscillating about an e

quilibrium position under an external periodic force.
Let y be its displacement from the equilibri

um position at an instant during the oscillation. Its

instantaneous velocity is %

Three forces are acting upon the system at this instant.

1. Arestoring force proportional to the displacement y, but acting in the opposite direction.
This may be written as
- Ky
Here, K is the restoring force per unit displacement.

2. A frictional force proportional to the velocity but acting in the opposite direction. This
may be written as

dy
~ “—d—t,
Here, p is a positive constant depending upon the force of resistance.
3. An external periodic force represented by
F sin pt.

Here p is the angular frequency of the applied periodic force,

d’y . . .
Let m be the mass of the system and d—tz— the instantaneous acceleration,

The equation of motion of the system is

d’y dy
—— = — Ky —u—+ F'sin pt
md12 y “dt P
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o NS M._-.-..-_.___E’LMﬂger
m%;‘-\p-‘%q»l(v = Fsinpt ()
't [4 . ¥ 5 ¢ ’
- epresenting the forced vibrationg ;.
Gencral Solution. The particular solution of Fq. (1) represc ns iy
y=asin@r ) 2y
oy .
— = an CON (P (1) “'(3}
I
d’y b ik N '
S =—ap si(pr- ) I ~(4)
dr
Substituting these values in Eq. (1). )
- mptasin (r - a) + W ap cos (pt - a) + Ka sin (pf — o) = Fsin pt
- mp= afsin pi cos @ - cos pf sin o] + pap[cos pt cos o+ sin pf sin o | oy
*+ K {sin pt cos a - cos prsina |~ Fsinpr=0 e (3)
When sinpr =1 cos pr=0
~mp~acosa+ pap sina + Ka cos o~ F=0 ~(6)
When cos pr =1 :sin pr=0 r
*mp asina+papcosa - Ka sino =0, AT
Dividing Eq. (7) by cos a and simplifying
tano = ‘L, = ﬁ .(8‘)
(K-mp™) B ; .
From Eq. (8). sina = \/—2_“4_; . | ..(9)
A° + B- .
cosa = <
Vm ~..(10)
Dividing Eq. (6) by cos a. 3
F
sos + + Ka -- =
mp’a+ yaptana+ Ka povnil iy
or al(K-mp’)+pptana )=
cosu
But (K- my?)= B, and pp - 4.
Substituting the values of tan « and cos « in Eq. (11),
(5. £] . B »
a ——— L3 - - —-
B /]
a= e
;;A’ + i
Substituting the values of A and B
I
“ = > bl B
\/u‘p' +(K - mp*y? (12)

y = asinpf-a)
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- F
or VS  — (13)

» sin (pt — o
- N2P2+(K-mp2)3 (pt - a)

Another solution is obtained When F =

Y = Cegin (Br+8) ..(14)
\ 2
Here. p= K _
m 4yt

The general solution is

y=Ce""’sin(Bt+8)+ — F =sin(Pr—a) .. (15)
«/;p' +(K - mp*)? SN

away with time.

The first term is the transient term and dies

The second term is called the steady state te

' i rm. During the steady state, the oscillator performs
forced oscillations with the impressed force freq '

uency.

Resonance : The amplitude of the System executing forced vibration is

= L“‘T‘“ ' ... (16)
VW PP + (K — mp??

The amplitude is maximum when the denominator is minimum.

This is possible if K — mp?= 0 or K = mp*

K . ;.
o & _ - (17)
or _ p e ‘ 4
or P =0 : '
... when frequency of the external force = natural frequency of the system.
F F

JRTS i tresonance = — = ———e—w-—

If friction is present, the amplitude at reso w K im

. F |m
or amplitude at resonance = p VK
Further, the amplitude will be infinite if u is also zero.
In practice some damping is always present and 1 is never zero. Hence the amplitude at resonance

»

ccomes very large but not infinite..
A

No Damping (1 = 0)

T Small Damping (1 is small)
Moderate Damping
Large Damping (p is large)

—>p

Amplitude of Forced Vibrations

p<o p=o P2@-

Fig. 11.5
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Properties of Matter.

Sharpness of Resonance : Sharpness of resonance refers to the fall in amplitude with change in
frequency on each side of the maximum amplitude. The resonance is said to be sharp if the amplitude
falls off r'apidly with the deviation of @ from p. The degree of sharpness depends upon the magnitude
of dampmg. For sharpness of resonance, p (damping coefficient) must be small. In the sonometer
experiment, we get sharp resonance due to the small damping coefficient of the wire.

In the experiment, for determining velocity of sound in air by the resonance column experiment,
the resonance is flat due to the large damping coefficient of air.
Typical response curves showing sharp resonance and flat
(/) When the frictional forces are absent, i.e., p = 0, the sharpness of resonance is maximum,
in the value of .

(ii) The sharpness of resonance decreases with increases 1

resonance are shown in Fig. 11.5,

‘5)FOURIER THEOREM

Statement : Any single valued perio
simple harmonic terms which are multiples of the given function.

Conditions : The theorem has the following two provisions:

(1) The displacement must be a single valued function and continuous. This condition is
satisfied in the case of sound waves. A particle cannot actually have two different displacements

simultaneously.

(2) The displacement must always have a finite value. Thi
A particle cannot have infinite displacement.

Explanation. The theorem deals with the synthesis of a com
harmonic terms. It also gives a method to analyse a complex vibration into its compone

In acoustics, Fourier’s theorem is applied for the analysis of musical notes. A complex musical
note may be graphically represented as a periodic function. Fourier’s theorem states that it is made
up of a number of simple harmonic functions which represent pure tones. :

dic function can be expressed as a sum of a number of

s is true in the case of sound waves.

plex periodic vibration from simple
nt vibrations.

11/6)\FOURIER SERIES
athematically, Fourier’s theorem can be expressed as :

T m=®

y =f(ot)= By + Z A, sinmot + B,, cos m‘cot (D)
m=1 m=1
Here, y = f(ot) is the displacement of 2 complex periodic motion of angular frequency .
Tthius the complex motion is a sum of sine and cosine components of amplitudes Al; Ay oo
By, By, cvvnene and frequencies which are multiples of . B is a constant.

Evaluation of Fourier Coefficients
In order to use Fourier theorem for analysing a complex periodic motion or wav

must evaluate the Fourier coefficients B, A and B, .

e-form, weé

Evaluation of By,
Multiply Eq.(1) by dt and integrate from 0 to 7.

Here, T is the period of the function.

‘C- ydt = LT B,dt + Lrl:"‘z':"’ A, sin ma)t]dt + I;r{"i“ B,, cos mmt} dt .(2)

m=1 m=1
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Here Lrl: 2 A,,,sinmcotJdt =0
m=1

wa

and _[)Tli 2 B cosmcol]dz =0
m=1

1 (7
ar By=+ [ya .03

Evaluation of A
Multiply Eq.(1) by sin m ot and integrate the terms for a complete cycle 0 to T. Then,

2 (T .
4= 7 [ vsin (o)t )

Evaluation of B,

Multiply Eq. (1) by cos ma? and integrate from 0 to 7. Then we have

2 (T
B, = T L ycos (mot) dt -(5)

al note depends upon the harmonics present

Application in Sound : The quality of a music
sing its oscillation into

in it. Hence Fourier’s theorem can determine the quality of a note by analy
its harmonic components.

The determination of
harmonic analysis of the vib
o, 20, 30, ..., etc., are called
of the complex vibration.

11.7.SAW-TOOTH WAVE

Let us apply Fourier’s theorem to analyse a
saw-tooth wave into its harmonic components. The
displacement curve of a periodic saw-tooth wave is

shown in Fig. 11.6.
The displacement falls off linearly from

= () when ¢ increases from 0 to 7. Saw-

the Fourier series corresponding to a given complex vibration is called
ration. The terms of this series, whose cyclic frequencies are equal to
the first (ﬁmdamental), second, third, .... etc., harmonics, respectively,

y=atoy
tooth wave can be represented by the equation
f
y=f((ol)=a(l~7) forO0<t<T (1)
According t0 Fourier Theorem,
m=m n = a0
y=f(of) = By+ Y. A,sinmot+ )Y B, cosmot 3
me=| ms=| ( )
Here B 1 _[)T dr
1 =—=1y
o T ..(3)

2 (7 .
=7 [} ysin (mar) ar @

N
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2 (T
and B, = 7 L ycos (mwi) dt -45)
Let us obtain the values of the coefficients B, 4, and B,.
; 1 (T
(i) B, =+ [y
./ Ta(l —L)dt
T
27
a t J
= emem| [ oem ——
T[ 2Ty
" [T _T_z] =B
T 2T] 2
a
B, = 5 ...(6)
T
(i) A, = % L ysin (mot)dt
_2r 1 d in (mot)dt
= ?L a ‘ _F, s (21 o
r g
= E’;:l L sin (e )t - }%L tsin(mei)dt ., |
4, s 2a[- L.,(;)i—fr_(_)l gg ("Lcosmwt)r_‘; I COS Mt dtJ
moT L e gy TN me  Jy no
4 = 2a | T + cos(mo x 0)]
'" Tmo)L me

; KTcos mwt )] 2a
P el § P
T2 m J T2

But - cos (mowT) +cos0 =0

and [sin(onN]y =0
B 2u[cosZ1:m_i_<_ S
Ay = 7"— me _iA .:”-”
=
A mm
(iii) B = '?’—LI yeos (maor i
m

= -j (I e —»)ws (mwl)dt

- B”I B 0
Hence all the cosine terms of the Fourier serics aic ubsent.

Substituting the values of B,, A, and B, in Eq. (2), we huve

&

L

T
sin mot |

>

m- 0.) 0

r-2|
o

A7)

(8)
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m=aw
y=flo)=2, a .
2 o Sinmo 9

_ a a . 1 ’
= —4 = .
d 2 g (sm of + Esm 20t + %sin 20t +.... + isin mot ) ...(10)
Fig. 11.7 shows how with the addition . m
aPProaches the shape of the saw-tooth waveon of successive terms, the resultant curve gradually
a -

Fig. 11.7

b}{@QUARE WAVE

Consider a square wave of period T shown in Fig. 11.8.

ya
a
o} T2 T s !
—-a .
Fig. 1.8
T
Let y=f(of) =0atr=0and =
_ T
y=f(mt)=+afor0<t<5 (1)
T
y=f(wf) =-afor 2 ot s
According to Fourier theorem,
m=®w m =
y=f(wf) = By+ Y, A,sinmot+ Y B, cosmot (2
m=1 m=1
1 7
Here, B, = FL vdt .(3)
2 i (st
A = ?L ysin (mo 4)
2 7
B,=% [} ycos (moryar (5

Let us obtain the values of the coefficients B, 4, and B,.
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1 7
() BO = F L y dt
Substituting the value of y from Eq. (1), we get

1 (2 N -0
B0 = -T-' ad’—?‘[’./zad’ .

By =0 ~(6)
(i) Ay = %Lry R

22 (2mmt), 2T . (zmnt)dt
=7'[> asm(———T—)dt T I[/Zasnn T
T/2 T
=(2_a) T [_cos(zmmﬂ _(gg)i[_cos(me)
T )2mn T Jly T )2mn T s

= L[—cos(mn:) + cos 0) [— 2 [—cos (2mm) + cos (mn:)] -
_. mn mm

= i[— cos(mm) + 1+ cos(2mm) — cos(mm)]
mrw '

= min[z - 2<:vos(m1t)] [ cos (2mm)=1]

= :—jt[l — cos(mm)]

A, =0form=246, .. (even integers)

4a
and A4, = o form=1,3,5 (odd int_egers) A7)
" 2 (T
(iii) B, = T L ycos(mot)dt
2 2
== ycos( mm)dt 2n
T r L |ve=—
Substituting the value of y from Eq. (1), we get T
_ 2 (n 2mmnt 2 T
oo e 2] 2w,

el o ey

T/2

e —-a— - -2 i
(mn [sin(mm) - sin 0] m[sm@mn)

= sin(mn))

a

- | — |[28i ~ 8 =

(mu)[ sin(mm) 8in(2mm)) = ()
8=l

i- - ﬁ 70\
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plence all the cosine terms in Eq. (2) are zero
- bstituting the values of o
Su of B, :m and B, in Eq.(2), we have
= = da| . 1
y=f(orn = -;l:sm ot + ssin(3m1) + %sin(sm() & :I ..(9)

we take the first three terms of the abo i
. . ve seri i e
ogether: The result is shown in Fig. 11.9, o representing fhe e WEES

4a
—A

- sin ot Add
ition of first three terms

4]

\ Com, g
o i ¥ ‘E H g T
VA A N AN —>t
Yot S T N
) L y
i
i H
i i
W\erf!
e W
Fig. 11.9

The first harmonic has the frequency of the square wave. The higher frequencies build up the
quareness of the wave. '

The highest frequencies are responsible for the sharpness of the vertical sides of the wave.

The resultant of the first fifteen terms of Eq. (9) is shown in Fig. 11.10.

: -

y

| - t —>

Fig. 11.10

This figure is a near approach of a square wave form but not an exact square form. However,
addition of more and more terms will give a resultant curve nearly approaching a square wave form.

ULTRASONICS

11.9.INTRODUCTION :
The human ear is sensitive to sound waves in the frequency range from 20 to 20,000 Hz. This

range is called audible range. Sound waves of frequency more than 20,000 Hz are called w/trasonics.

These frequencies are beyond the audible limit. |
These waves also travel with the speed of sound (330 ms™).
These waves exhibit the properties of audible sound waves and also show some new phenomena.

Their wavelengths are small. '
Example 1. What is the wavelength of ultrasonic wave of frequency 330 kHz at 0°C ?

o — ——l
(Given : Velocity of sound at 0 Cc=330ms".]
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\
Solution. The relation between velocity (v), frequency (n) and wavelength (4) is

v=nki

330

- = 10_3m= lmm
(330 x10%)

A==
n

11.10. PIEZOELECTRIC EFFECT

. Pressure

If one pair of opposite faces of a quartz crystal is subjected to
pressure, the other pair of opposite faces develops equal and opposite
electric charges on them (Fig. 11.11). The sign of the charges is
reversed when the faces are subjected to tension instead of pressure.
The electric charge developed is proportional to the amount of | + - |Change
pressure or tension. This phenomenon is called Piezoelectric effect.
The effect is reversible, i.e., if an electric field is applied across T

one pair of faces of the crystal, contraction or expansion occurs [
across the other pair. Fig. 1L.11

When the two opposite faces of a quartz crystal, their faces being cut perpendicular to the
OPptic axis, are subjected to alternating voltage, the other pair of opposite faces experiences stresses
and strains. The quartz crystal will continuously contract and expand. Elastic vibrations are set up
n the crystal.

When the frequency of the alternating voltage is equal to the natural frequency of vibration of
the crystal or its simple higher multiples, the crystal is thrown into resonant vibrations. The amplitude
is large. These vibrations are longitudinal in nature. 4

Consider a X-cut crystal plate of thickness 7. The fundamental frequency of vibration is given by

1 |E

n= o ;
E'is the Young’s modulus and p is the density of the material of the crystal plate.

Example 1. 4 quartz crystal of thickness 0.001 m is vibrating at resonance. Calculate the
fundamental frequency. Given E for quartz = 7.9 x 10! Nm and p for quartz = 2650 kg m™.

1 [E 1 ’(7.9 x10'%) p
. = — |—= - = 2. .
Solution n 2\ p ~ 2x0.00] 2650 73 x10°Hz. .

Example 2. A4 piezoelectric X-cut quartz plate has a thickness of 1.5 mm. If the velocity of
propagation of longitudinal sound waves along the X direction is 5760 m/, , calculate the fundamental
Jfrequency of the crystal. _ _

Solution. For the fundamental mode of vibration,

A
thickness = 5

A = 2 x thickness =2 x (1.5 x 10%) m =3 x 103
v_ 5760
A (3x107%)

Frequency, n= =1.92x10°Hz

11.11. PRODUCTION OF ULTRASONIC WAVES — PIEZOELECTRIC CRYS"lL
METHOD e st

Principle. This is based on the inverse piez({clccgric effect. When a quartz crystal is subjected t0
an alternating potential difference along the electric axis, the crystal is set into elastic vibrations along
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It is a base tuned oscillator circuit. A slice of quartz crystal is placed between the metal plates
4and B so as to form a parallel plate capacitor with the crystal as the dielectric. This is coupled to
the electronic oscillator through primary coil L of the transformer.

Coils L, and L, of oscillator circuit are taken from the secondary of the transformer. The

collector coil L, is inductively coupled to base coil L;. The coil L, and variable capacitor C, form the
tank circuit of the oscillator.

Working. When the battery is switched on, the oscillator produces high frequency oscillations.
An oscillatory e.m.f. is induced in the coil L, due to transformer action. So the crystal is now under
high frequency alternating voltage.

The capacitance of C, is varied so that the frequency of oscillations produced is in resonance with
the natural frequency of the crystal. Now the crystal vibrates with large amplitude due to resonance.
Thus high power ultrasonic waves are produced.

Advantages
1. Ultrasonic frequencies as high as 500 MHz can be generated.

2. The output power is very high. It is not affected by temperature and humidity.
3. It is more efficient than magnetostriction oscillator.

4. The breadth of the resonance curve is very small. So we can get a stable and constant
frequency of ultrasonic waves.
Disadvantages

1. The cost of the quartz crystal is very high.
2. Cutting and shaping the crystal is very complex.



