Arrays

g h b et

[}

(@] iNTRODUCTION 0
So far we have used only the fundamental data types, namely char, int, float, double ang
variations of int and double. Although these types are very useful, they are constrained by
the fact that a variable of these types can store only one value at any given time. Thereforé
they can be used only to handle limited amounts of data. In many applications, however, we
need to handle a large volume of data in terms of reading, processing and printing. To proé
ess such large amounts of data, we need a powerful data type that would facilitate efficien
storing, accessing and manipulation of data items. C supports a derived data type known i1
array that can be used for such applications.
An array is a fixed-size sequenced collection of elements of the same data type. It is simg |
a grouping of like-type data. In its simplest form, an array can be used to represent a list of
numbers, or a list of names. Some examples where the concept of an array can be used: &
* List of temperatures recorded every hour in a day, or a month, or a year.
List of employees in an organization.
List of products and their cost sold by a store.
* Test scores of a class of students.
¢ List of customers and their telephone numbers.
Table of daily rainfall data.
and so on. hyo iz i
Since an array provides a convenient structure for representing data, it is classified as ofie
of the data structures in C. Other data structures include structures, lists, queues and treéSS
A complete discussion of all data structures is beyond the scope of this text. However, 3
shall consider structures in Chapter 10 and lists in Chapter 13. '
As we mentioned earlier, an array is a sequenced collection of related data items thal®
share a common name. For instance, we can use an array name salary to represent a sef o
salaries of a group of employees in an organization. We can refer to the individual salaries bi#
writing a number called index or subscript in brackets after the array name. For example;

salary [10]

represents the salary of 10* employee. While the complete set of values is referred to as af
array, individual values are called elements.

-

R Ly b |
S AT O —] 191
The ability to use a single name to represent a collection of items and to refer to an item by
specifying the item number enables us to develop concise and efficient programs. For exam-
ple, we can use a loop construct, discussed earlier, with the subscript as the control variable
to read the entire array, perform calculations, and print out the results.
Wemmnmyshmpmmtmtonlr:impleﬁatsuhalum but also tables of data in two,
three or more dimensions. In this chapter, we introduce the concept of an array and discuss
how to use it to create and apply the following types of arrays.
* One-dimensional arrays
* Two-dimensional arrays
* Multidimensional arrays

e Py Tl

o -4

C supports a rich set of derived and user-defined data types in addition to a Lo
variety of fundamental types as shown below: B

- Arrays - Integral Types - Structures

- Functions - Float Types - Unions

- Pointers - Character Types - Enumerations =
Arrays and structures are referred to as structured data types because they canbe | &

b | used to represent data values that have a structure of some sort. Structured data
types provide an organizational scheme that shows the relationships among the
= | individual elements and facilitate efficient data manigulations. In programming
parlance, such data types are known as data structures.

In addition to arrays and structures, C supports creation and manipulation of the :
following data structures: '

e Linked Lists
_ * Stacks
l‘ * Queues
* Trees

i ': 3 ol B 1 L T o

A R

A Fi
P o s

192

wRESRR S ANy — b
7.2| ONE-DIMENSIONAL ARRAYS '

3 ! :Lﬁi.‘
A list of items can be given one variable name using only one subscript and such a variableis.
ralled a single-subscripted variable or a one-dimensional array. In mathematics, we oftén.

leal with variables that are single-subscripted. For instance, we use the equation.

o calculate the average of n values of x. The subscripted variable x; refers ta the ith elemen{
:f‘ x. In C, single- nuhsmp;ad vanablg %, gan, be ﬂpl‘&ﬂ&ﬂd as .
[2

- x1)y x[2], x[3]eeienne ..x[n] -
I‘ha subscript ean begin with number 0, That is -
x[0) . faiis

s allowed. For example, if we want to represent a set of five numbers, say (35,40,20, 5? 1
)y an array variable number, then we may déc'lare tha variable number as follows j

int number([5]; -
ind the computer reserves five storage locations as shown below: adt

number [0]
e number [1] |
5 number [2] v |
number [3] '
number [4]
'he values to the array elements can be assigned as follows:
number[0] = 35;
number[1] = 40;
number [2] = 20;
number [3] = 57;

number[d] = 19;
his would cause tha array number to store the values as shown below:

- number [0] 35
number [1] 40
number [2] 20
number [3] 37
number [4) 19

These elements may be used in programs just like any other C variable, Fnr exampla,
llowing are valid statements: ;

a = number[0] + 10;

number[4] = number[0] + number [2];
number[2] = x[5] + y[10];

value[6] = number[i] * 3;

e e e Arrays ORI . S 193

The subscripts of an array can be integer constants, integer variables like i, or expressions
that yield integers. C performs no bounds checking and, therefore, care should be exercised to
ensure that the array indices are within the declared limits.

7.3] DECLARATION OF ONE-DIMENSIONAL ARRAYS

Like any other variable, arrays must be declared before they are used so that the compiler
ean allocate space for them in memory. The general form of array declaration is

type variable-namef size J;

The type specifies the type of element that will be contained in the array, such as int,
float, or char and the size indicates the maximum number of elements that can be stored

ingide the array. For example,
float height[50];

declares the height to be an array containing 50 real elements. Any subscripts 0 to 49 are
valid, Similarly, '
int group[10];
declares the group as an array to contain a maximum of 10 integer constants. Remember:
* Any reference to the arrays outside the declared limits would not necessarily eause an
error. Rather, it might result in unpredictable program results,
* The size should be either a numeric constant or a symbolic constant.

The C language treats character strings simply as arrays of characters. The size in a
character string represents the maximum number of characters that the string can hold. For
instance,

char name[10];

declares the name as a character array (string) variable that ean hold a maximum of 10
tharacters. Suppose we read the following string constant into the string variable name.

“WELL DONE"

Ench character of the string is treated as an element of the array name and is stored in
the memory as follows:

SRR S b _.:r. i 1 ..".'}
When the compiler sees a character string, it terminates it with an additional nul

ter. Thus, the element name[10] holds the null character \O'. When declaring
arrays, we must allow one extra element space for the null terminator, .

Write a program using a single-subscripted variable to evaluate the L
lowing expressions: ' £

10
Total = Y x?
=1

The values of x1.x2.....are read frém the terminal.]
, Program in Fig. 7.1 uses a one-dimensional array x to read the values and computg,
| # | } ' = Fal 1 1l i

") . 1.3 !,
mu_n:t:-f'i.hun_:.-lp;qu.rmj_f?.-;;.!,LH,_1,“_II~ e

f?ﬂ:gru EEEHE
- main() 14 tonte
h | : | [I
int §
float x[10], value, total ;

[*« ++ . . READING VALUES INTO ARRAY | iz
* printf(“ENTER 10 REAL NUMBERS\n*) :
for‘{l-ﬂ;iﬂlﬂ:iH]
{

scanf("5f", &value) ;
x[i] = value ;

[¥e e e o LCOMPUTATION OF TOTAL". , o/,
total = 0.0 ;
for((1 =05 3<10; joe)
total = total + x[i] * x[i]
/*« . . . PRINTING OF x[1] VALUES AND JOTAL -0 ef
printf("\n");
for(i =0;1<10; j++)
printf("x[%2d] = %5.2f\n*, 141, x[i]) ;
printf("\ntotal = %.2f\n", total) ;

Output
ENTER 10 REAL NUMBERS

— Arrays ———]195

1.1 2.2 3.34,45.56.67.78.809.9 10.10

x{ 1] = 1.10
x[2] = 2.20
[3] = 3.30
x[4] = 4.40
x[5] = 5.50
x[6] = 6.60
x[7] = 7.70
x[8] = 8.80
x[9] = 9,90
x[10] = 10.10

Total = 446.86

L L SR

il L e e 5 il A

= e ;-1'.H|-1;;-1'd‘#’1_£tn':.:i|"-r"l";lr-s'-' ;r._.-_. I .I'I""-':. -;-r" 2

Fig. 7.1 FrﬁErﬁm:'tifiﬂ:&sfr%ﬁ ﬁhe—“&lrﬁiﬁ:lunnl array

mqgﬂ permits arrays whose size can hn__-par:illud at run time. See ﬁppendi::CBE Fanturnsq

| INITIALIZATION OF ONE-DIMENSIONAL ARRAYS

~ After an array is declared, its elements must be initialized. Otherwise, they will contain
‘garbage”. An array can be initialized at either of the following stages:

* At compile time
* At run time

Compile Time Initialization

We can initialize the elements of arrays in the same way as the ordinary variables when they
are declared. The general form of initialization of arrays is;

type array-namefsize] = [list of values J;

The values in the list are separated by commas. For example, the statement
int number[3] = { 0,0,0);
will declare the variable number as an array of size 3 and will assign zero to each element.

Fthe number of values in the list is less than the number of elements, then only that many

elements will be initialized. The remaining elements will be set to zero automatically. For
Instance, :

float total[5] = {0.0,15.75,-10);

Will initialize the first three elements to 0.0, 15.75, and -10.0 and the remaining two ele-
| Ments to zero.

196 | , Programming in ANSI C

The size may be omitted. In such cases, the compiler allocates enough space for all initial-
ized elements, For example, the statement
int counter[] = {1,1,1,1};
will declare the counter array to contain four elements with initial values 1. This approach
works fine as long as we initialize every element in the array. !
Character arrays may be initialized in a similar manner. Thus, the statement :
char name[] = {'3','0', 'h', 'n’, "0'); I
declares the name to be an array of five characters, initialized with the string “John” ending
with the null character. Alternatively, we can assign the string literal directly as under: i
1 char name [] = "John";
(Character arrays and strings are discussed in detail in Chapter 8.) v,
Compile time initialization may be partial. That is, the number of initializers may be less¥
than the declared size. In such cases, the remaining elements are inilialized to zero, if the
array type is numeric and NULL if the type is char. For example,
it . dnt pumber [5] = {10, 20}; .
will initialize the first two elements to 10 and 20 respectively, and the remaining elements tg%
0. Similarly, the declaration. -

c'I‘ur l:iltll" ['5] = {'8'); AL :
will initialize the first element to ‘B’ and the remaining four to NULL. It is a good idéf
however, to declare the size explicitly; as it allows the compiler to do some error checking
Remember, however, if we have more initializers than the declared size, the compiler wi
produce an error. That is, the statement | i
' int number [3] = {10, 20, 30, 40}; 4

will not work. It is illegal in C.

Run Time Initialization

An array can be explicitly initialized at run time. This ﬁppri:mch is u'aunll_-,r applied for ini il
izing large arrays. For example, consider the following segment of a C program, pid

for (1 ;'U; i tllﬂn; { = t+lf
{
if 1 <50
sum[i] = 0.0; /* assignment statement */
else
sum(1] = 1.0;

i

. S -

The first 50 elements of the array sum are initialized to zero while the remaini
elements are initialized to 1.0 at run time.

-
(]

int x [3];

scanf("%d%dyd",

&x[0], &[1], ax[2)).
will initialize array elements with the

values entered through the keyboard.

£l Given below is the list of marks obtained by q class of 50 students in an
annual examination,

4365512779 1 56 61 820?25360?495563 74 81 49 37
4049 16 75 87 9 3324

78 65 56 76 67 45 54 34 63 1221
734951 19 39 49 68 59

Write a program to count the number of students belonging to each of
following groups of marks; 0-9, 10-19, 20-29, 00.

|

ments, one for each
ment counts those valyes falling wit ge of values it repre.
sents.
. For any value, we can determine the correct group element by dividing the value by 10
For example, consider the value 59, The intege i
element into which 69 i

Program

fdefine MAxvaL 50
fdefine COUNTER 11

main()

{
float value[MAXvAL) ;
int i

» low, high;
int group [COUNTER] = [E.ﬂ.ﬂ.ﬂ.ﬂ.ﬂ.ﬂ.ﬂ.ﬂ.ﬂ.ﬂ};
B e g g i READING AND COUNTING ,

» a0 e o2
b1 o< MAXVAL 5 j4e)
{
e « + READING OF ALDES - v nw o ™ of |
scanf(*yfv, bvalue[i]) ;
P o g COUNTING FREQUENCY oF GROUPS. . . . oS
*+ group[(int) (value[i]) / 10] ,
}
F iU +PRINTING OF FREQUENCY FAREE: o aiei oo *f
printf(*\n"); 9
printf(* GRoup RANGE FREQUEHCHH\H"] H
for(§ = ¢ i 1 < COUNTER i i)
{
low = § * 19 -
(i == 10)

high = 100 ;

198 | Programming In ANSI C i
else :
d high = low + 9
! printf(" %2d %3d to %3d %d\n", %
2 " 441, low, high, group[i]) ; 1l
J bt
y)
A , Output ; e
- 43 65 51 27 79 11 56 61 82 09 25 36 07.49 55 63.74
o o 81449 3740 49 16 75,8791 33 .24 58 78 65 56,76 67 (Input data) “f
. 45:54 36 63 12 21,7349 51,19,39 49 68 93 85 59 il
GROUP RANGE o .. . - - FREQUENCY
! ' 1 1 T pids 1o 'o-- tur' g o Lo |2 i
* rey okl | 06 04 T N oA, T
- riinl 20 to 29 v A
: TG aalg Tl e 30 to: 39 5
Byian ca BTG 10 4_'5- : T gl R0l 49 - 8.
6 50 to 59 8
' v s vhiiBeih o o oln 0668 o0 6% 7.
(o o ablabafe TR 2 0tal 70 Jto, 479 F
- 9 80 to 89 wi i R S
10 90 to 99 2
" u

11 100 to 100

Note that we have used an initialization statement.
int group [COUNTER] = {n.n.u.u.u,u.u.n,u,n-,u};

which can be replaced by lasth
int group [COUNTER] = (0};

This will initialize all the elements to zero,

\| Searching and sorting are the two most frequent operations performed on arrays.
| Computer Scientists have devised several data structures and searching and sorting
techniques that facilitate rapid access to data stored in lists.

W Sorting is the process of arranging elements jn the list according to their values, in

| ascending or descending order. A sorted list is called an ordered list. Sorted lists are
| especially important in list searching because they facilitate rapid search opera-
| tions. Many sorting techniques are available. The three simple and most important

among them are:

i e {199

* Bubble son
* Selection sort
i ; e Insertion sort

]' Other sorting techniques include Shell sort, Merge sort and Quick sort.
|¢.'

Searching is the process of finding the location of the specified element in a list,
' The specified element is often called the search key. If the process of searching
finds a match of the search key with a list element value, the search said to be

successful; otherwise, it is unsuccessful, The two most commonly used search tech-
niques are:

e Sequential search

* Binary search

A detailed discussion on these techniques is beyond the scope of this text. Consult
any good book on data structures and algorithms,

-

4

TWO-DIMENSIONAL ARRAYS

8o far we have discussed the array variables that can store a list of values. There could be
situations where a table of values will have to be stored. Consider the following data table,
which shows the value of sales of three items by four sales girls:

& Iteml Trem2 o lém3

Salesgirl #1 310 275 365
Salesgirl #2 210 190 325
Salesgirl #3 405 2315 240
Salesgirl #4 260 300 380

The table contains a total of 12 values, three in each line. We can think of this table as a
Matrix consisting of four rows and three columns. Each row represents the values of sales by
®particular salesgirl and each column represents the values of sales of a particular item.
b In mathematics, we represent a particular value in a matrix by using two subscripts such
L™ V. Here v denotes the entire matrix and vy refers to the value in the i row and j**
Lolumn, For example, in the above table v, refers to the value 325,

+C allows us to define such tables of items by using two-dimensional arrays, The table
¢ Scussed above can be defined in C as

vi4](3]

! %o-dimensional arrays are declared as follows:

type array_name [row_size][column_size];

|
200

Note that unlike most other languages, which use one pair of parentheses with commas to
separate array sizes, C places each size in its own set of brackets, Fie

Twé-dimensional arrays are stored in memory, as shown in Fig.7.3. As with the single-
dimensional arrays, each dimension of the array is indexed from zero to its maximum size
minus one; the first index selects the row and the second index selects the column withinfii

that row. i
Column0 ~ Columnt Column2 8
() c) SRR ()45 I ()] -4
£ e . .;"' o KgTT
Row 0 -> [fp ol YL Sl b
f [1110] (11011 (11z2]

q210) - - - (2M11)— J212) . : . .

; mzuup 1 :' Ié 14

(o) (3N agal T F
S . R P T r R : : | !

1 write a program using a two-dimensional array to compute and prifiey -
= the following Information from the table of data discussed above:; 1
(o) Total value of sales by each girl.

(b) Total value of each Item sold.

(c) Grand total of sales of all items by all girls.

The program and its:output are shown in Fig. 7.4. The program uses the variable value}
two-dimensions with the index i representing girls and j representing items, The followin
equations are used in computing the results: -

1 '
(a) Total sales by m' girl = Z value [m][jl(girl_total[m])
j=0 ,

3 .
(b) Total value of n* item = E value [i] [n](itam_tqtal{p])

i=0

- g 3
(¢) Grand total = Y Y valuelil(j]

i=l j=0

—— AT R ' | 20

3
= Z girl_totalli]
1=l

= E item_totallj)

j=0
" Program
fdefine MAXGIRLS 4
f#define MAXITEMS 3

main()

(

Int value[MAXGIRLS] [MAXITEMS]:

int girl_tota) [MAXGIRLS] , item_total [MAXITEMS);
int i, j, grand total;
/*......READING OF VALUES AND COMPUTING girl_total ...*/

prlnff["lnput data\n");
printf("Enter values, one at a time, row-wise\n\n");

for(1 =0 ; 1 < MAXGIRLS ; i++)

{
girl_total[i] = 0;
for(j = 0 ; j < MAXITEMS ; j++)
l
scanf("%d", &value[i][4]): |
girl_total[i] = girl total[i] + value[i)[i];
)
}
F P COMPUTING item total..,........ o P e S */
for(j =0 ; j < MAXITEMS s J#r)
{
item_total[j] = 0;
for(1 =0 ; i < MAXGIRLS ; i++)
item_total[j] = item total[j] + value[i][j];
}
| A P COMPUTING grand_total........cvivvvennivinenn, */
grand_total = 0; A
for(1 =0 ; 1 < MAXGIRLS ; {++)
grand_total = grand_total + girl total[i];
F R PRINTING OF RESULTS.....ovvvvunn. "Ra Ay ee vet)

printf("\n GIRLS TOTALS\n\n"):

for(i =0 ; { < MAXGIRLS ; g 70
printf("Salesgirl[%d] = %d\n", i+1, girl_total[i]);
printf("\n ITEM TOTALS\n\n"); '
for(J =0 ; § < MAXITEMS)
printf(*Item[%d] = %d\n", j+1 , item total[j]);
printf("\nGrand Total = %d\n", grand_total);
] : =
Output
Input data

Enter values, one at a time, ruT_m;é
|

310 257 365 '\ '
210 190 325 [oNa: L aam) i OTAM.

40? 235 240,, ik iR S ST RigLaM: ()
260 300 380 . i

y VBT

P
o [t EA

e g I N

wli"le

GIRLS "TOTALS - <¥TTUMHOD AR 250URY 40 o i) o :

Salesgiri[1] = 950 AT TRy et : f
o i e L 7 SR PR

Salesgiri[3) = 880

Salesgirl[4] = 940 IR I

ITEM TOTALS

R S . 4
Item[1] = 1185 R TRET ;
Item[2] = 1000 '
Item[3] = 1310

' Grand Total = 3495

A

Ple’74| Write a program to compute and print @ multiplication table for ni
i bers 1 to 5 as shown below: It 3

(3%

_ lic]~ 2 4 5
]] 2 3 a 5
2 2-1 4 V& ™8 79
3 3 6 .

4 31 B .
5 9,1 10 25

product[i] [j] = row * column

#define ' RONS vi§

fdefine COLUMNS ' ¥t
main() -

“int row,
int 1, §
printf(" MULTIPLICATION TABLE\n\n") ;
printf(* *) .
for(j =1 ; J <= COLUMNS ; j+)

S printf("5ad" | j) ; ey
printf(*\n*) .,

printf(* '
for(i =0 ; i < pows P4)
(

colunmn, prﬁdﬁét[ﬂﬂﬂﬁ][ﬁﬂLUﬁiS] ;

- \n"):

row =4 + 1

printf(*s2d |*, row) ;

for(j =1; j <= COLUMNS ; j++)
{

column = j .
product[1][j] = row * column
printf(“%ad", product[1]1[j]) ;

printf("\n")

}
Output

MULTIPLICATION TABLE
L & % & 's

|
EMI

5| INITIALIZING TWO-DIMENSIONAL ARRAYS

L
)

Like the one-dimensional arrays, two-dimensional arrays may be initialized by Fnllumng’
their declaration with a list of initial values enclpsed in braces. For example,

int table[2][3] = { 0,0,0,1,1,1};

initializes the elements of the first row to zero and the second row to one. The mltlahzau 3
is done row by row. The above statement can be equivalently written as

int table[2][3] = {{0,0,0}, {1;1,1}};

by surrounding the elements of the each row by braces,
We can also lmhahz& a two?;mﬂnsinnﬂl array in the form of a matrix as shown below:

int tihll[!]{i] 15 5
WO TR N {0,0,0},
{1,1,1}

o . | '}; vk

Note the syntax of the above statements. Commas are reqmrad after each brace that clo -:f-:'. 1 |
off a row, except i m the case of t.ha lnst row, - 3

gize of the first dimension. That is, the statement

int table [] [3] = {
{0,0,0},
{1,1,1}
hi
is permitted. :
If the values are missing in an initializer, they are automatically set to zero. For instang

the statement

int table[2][3] = {
{1,1},
{2}
b }
will initialize the first two elements of the first row to one, the first element of the second £
to two, and all other elements to zero. >

When all the elements are to be initialized to zero, the following short-cut method magl
used. ,

int m[3][5] = { {0}, {0}, {0}};

The first element of each row is explicitly initialized to zero while other elemen

and Marut) was conducted n four cifies (Bombay, Calcutta, Delhi g8
Madras). Each person surveyed was asked to give his city and the iy
of car he was using. The results, in coded form, are tabulated as foli@

- — e AT | 205
M] C 2 B] D 3 M 2 B 4
C 1 D 3 M 4 B 2 D | Cc 3
D 4 D 4 M 1 M] B 3 B 3
e C] C 2 M 4 M 4 G 2
D 1 C 2 B 3 M B | C 2
D 3 M 4 C | D 2 M 3 B 4
Codes represent the following information:

M - Madras 1 — Ambassador
D - Delhi 2 - Fiat

C - Calcutta 3 — Dolphin

B — Bombay 4 — Maruti

Write a program to produce a table showing popularity of various

cars in four cities.
A two-dimensional array frequency is used as an accumulator to store the number of
cars used, under various categories in each city. For example, the element frequency [il(j]
denotes the number of cars of type j used in city i. The frequency is declared as an array of
size 5 x 5 and all the elements are initialized to zero.

The program shown in Fig. 7.6 reads the city code and the car code, one set after another,

from the terminal. Tabulation ends when the letter X is read in place of a city code.

Program

main()

I
int i, j, car:
int frequency[S][5] = { {0],{0},{0},{0},{0} };
char city;
printf(“For each person, enter the city code \n");
printf(“"followed by the car code.\n"):
printf("Enter the letter X to indicate end.\n");

o TR S TABULATION BEGINS of |
for(i =1 ;1 <100 ; i++)

o IR L | e il

scanf("%c”, Bcity);
if{ city == *Xx")
break:
scanf("%d", Bcar):
switch(city)
{
case 'B' : frequency[1][car]++;

break; 4
case 'C' : frequency[2][car]++:

break;
case 'D' : frequency[3][car]++:

break:

case 'M' : frequency[4][car]++:

zn&}

break:

! e . » +JTABULATION COMPLETED AND PRINTING BEGINS. . . .

printf("\n\n");
printf(" POPULARITY TABLE\n\n"):
printf(" -

\n*);

printf("City Ambassador Fiat Dolphin Maruti-\n"):

printf("
for(1 =1 /1 <=4 ; 14+)

s#1tch9f]
{ ' e
case 1 : printf("Bombay ~ ") ;
break ; e
case 2 : printf("Calcutta *) ;
break : Sl
case 3 : printf("DeThi " ")';
break : :
case 4 : printf("Madras ") ;
break ;
}
for{ j=1; j<43; jt)
printf(*%7d", frequency[il[i]) ;
printf("\n") ;

\n*);

Pt a: souas e itelle PRINTING ENDS.

Output
For each person, enter the city code
followed by the car code.

Enter the letter X to indicate end.
M1

2o 000 M

bt i o e

b A B e B — B — B o]
e P s B L) gy
oy X X @
l—lwwl—l_h.__
IEEREp o
Mi—*.ﬁllﬂmw
:I:m:lm.:.__,:
L e B Ll s o,
WO 0w e
.n-mmw,___,h

X

POPULARITY TABLE

City Ambassador Fiat Dolphin

Bombay 2] 3

:I:'_'_I :.._1

_. ALy

~ A S

TR T T R TS —

b A

Calcutta 4 5 1 0
Delhi 2 1 3 2
Madras “ 1 1 4

e I R e e T
- ¥ . o g LT, ol i R i % b Top Ll _-II-.'_ Vi ‘ g B
am s e s oy Memoty Layout ok Bt T ol 3

g B s

The subscripts in the definition of a two-dimensional array represent rows and col-
umns. This format maps the way that data elements are laid out in the memory. The
elements of all arrays are stored contiguously in increasing memory locations, es-
sentially in a single list. If we consider the memory as a row of bytes, with the
lowest address on the left and the highest address on the right, a simple array will
be stored in memory with the first element at the left end and the last element at the
right end. Similarly, a two-dimensional array is stored "row-wise, starting from the
first row and ending with the last row, treating each row like a simple array. This is
tllustrated below.

row 3 x 3 array
ronw 0 row 2)
et 115 -”—EH-??-'-_'J-‘J-EI"‘*” CADETS0E TR T t"?l:]' B0 90 !
0 OD] @2 e mn M1 @ @ing (2}(2)
1 2 3 4 5 6 7 8 9
Memory Layout

For a multi-dimensional array, the order
has 0 in all its subscripts, the second has

of storage is that the first element stored
all of its subscripts 0 except the far right

which has a value of 1 and so on.

The elements of a 2 x 3 x 3 array will be stored as under
1 2 3 &4 5 607 89

000 joot {00z [o1o fori Jor2 [oag Jo21 Jo2z |
101112 13 14 15 16 17 18
“1100 1101 102 (110 111 {112 [120 121 122

—

er subscripts increment in order |SHER}
.., 18 represents the location of B
& A

| from right to left. The sequence numbers 1, 2
| that element in the |ist

— 5 Eri ey e T i T R R
[77 MULTI-DIMENSIONAL ARRAYS _ 2
C allows arrays of three if more dimerisions. The exi fimit s determined by the compill
The general form of a m ti-dimensional array is - . :
where s, is the size of the ith dimension. Some examplé Are:

Int survey (3] (5] [12];
float table[s)la)[5)fa), .~ .~ . :
survey is a three-dimensional Y'dﬁdﬂredtumatajnlﬂﬂinteger-tjpeelamentﬂ.
larly table is a four-dimensiynal array containing 300 elements of floating-point type..

. The array survey may represent a survey data of rainfall during the last three years fre
January to December in five cities,

If the first index denotes year, the second clky wnd S thisd month: thec e il
survey|2][3](10] denotes the rainfall i e

i m*-hemunthufﬂctnherduﬁngtheumnﬂ
city-3. :
Remember that a three-dimensional array can be represented as a series of two-dimé
sional arrays as shown below: 1
month 1 o 12
| city
Year 1 D '
5
month 1 2 12
| aty
Year 2 1 e s
5

ArTAYS o ———— “-{ 209

rray dimension. However, most compilers permit

— S—_—

ANSI C does not specify any limit for 8
seven to ten dimensions., Some allow even more.

(78] DYNAMIC ARRAYS

me. An array created at compile time by specifying size

¢ be modified at run time. The process of allocat-
memory allocation and the arrays that re-
s. This approach works fine as long as

So far, we created arrays at compile ti
in the source code has a fixed size and canno
ing memory at compile time is known 85 5‘“': w i
m‘i?::l'“ﬁc memory allocation are called Sfi‘;j;m"
we know exact] jremen g

Consider a sifu:g:; Tﬁe‘::ieﬁqa‘::t to use an “ﬂ‘?;é:: E;“ vary greatly ?n size. Wg must
m Whﬂt wiu 'be th'E I-II.I'EEEl !-iIE ever I']Eﬂ'ded a a thm lln;:art:ny ﬂ;ﬂofdlﬂﬂif- A- dlml‘.‘ult
task in fact! Modern languages like C do not h“'s wedeaer on. In C it is possible to
allocate memory to arrays at run time. This feature i ';h ynamic memory allocation
and the arrays created at run time are called dynomic SITAYS. Zius effectively postpones the
array definiti : .

D;nm':in;::::;: :u.-: ;;:ed using what are known Hi. .faazrer uarfques and memory man-
agement functions malloe, calloc and realloc. 111&:;] im: inlan mcludedl ” th? header
file <stdlib.h>. The concept of dynamic arrays 15‘:':' di . mﬂt"':;g afnd n_'lHIHPu]ahng data
structures such as linked lists, stacks and queues- finke d: "lE_E ;‘: X EE“‘I pointers and pointer
variables in Chapter 11 and creating and managing 1sts in Chapter 13.

@ MORE ABOUT ARRAYS

What we have discussed in this chapter are the_hﬂﬁif r:nntcEDts of arrays gnd !.heir applica-
tions to a limited extent. There are some MO important aspects of application of arrays.
'nﬁj i-ﬂC]lldc:

* using printers for accessing arrays:

* passing arrays as function parameters:

* arrays as members of structures;
using structure type data as array ©
arrays as dynamic data structures, ﬂﬂd
manipulating character arrays and A
These aspects of arrays are covered later in the follo Shaptors:

Chapter 8 Strings
Chapter 9 : Functions
m’aphrr 10 : Structures
Chapter 11 : Pointers
Chapter 13 : Linked Lists

110}

#3 We need to specify three things, namely, name, type and &iz&, whmh: :
declare an array. _

Always remember that subscripts begin at 0 (not 1) and end at size -], =&
Defining the size of an array as a symbolic constant makes a program morg
_(8calable, ' =
Be aware of the difference between the "kth element” and the "element k!

.. The kth element has a ;'a'ﬁba,l:ript_,kd, whereas the element k_ has
Do not forget to initialize the elements; otherwise they will contain "ga

%o Supplying more initializers in the initializer list is a compile time e
#1 Use of invalid subscript is one of the common errors. ~An incorre
invalid index may cause unexpected results, o !
%3, When using expressions for subscripts, make sure that their results do i
. e MO f__gihapqm}apihlermmqfﬂtnsju—_l. Referring to an eleme
o Qutside the array bounds is an error, T A
#1 When using control structures for looping through an array, use prope
relational expressions to eliminate "off-by-one” errors. For example, for &
array of size 5, the following for statements are wrong: '
for (i = 1; i < =5; i+ +) '
for (i = 0;i < =5; i+ +)
for (i = 0; i = =5; i+ +)
Hor(i=0;i<4; i++)

Lt e 2l ETEE T S e

t

£ Referring a two-dimensional array element like xli, j] instead of x[i][j] i8¢
compile time error. B F
#1 When initializing character arrays, provide enough space for the term %
nating null character. =
% Make sure that the subscript variables have been properly initialized |
fore they are used. .
Leaving out the subscript reference operator [] in an assignment operS
tion is compile time error. T
During initialization of multi—dimensional arrays, it is an error to omit k.
array size for any dimension other than the first. 3

1. Median of a List of Numbers

When all the items in a list are arranged in an order, the middle value which divides :
items into two parts with equal number of items on either side is called the median. O

number of items have just one middle value while even number of items have two middle
values. The median for even number of items is therefore designated as the average of the
two middle values. ;
The major steps for finding the median are as follows:
1. Read the items into an array while keeping a count of the items.
2. Sort the items in increasing order.
3. Compute median.
The program and sample output are shown in Fig. 7.7. The sorting algorithm used is as
follows:
1. Compare the first two elements in the list, say a[1], and a[2]. If a[2) is smaller than
a[l], then interchange their values. - ')
2. Compare a[2] and a[3); interchange them if a[3] is smaller than al2).
3. Continue this process till the last two elements are compared and interchanged. -
4. Repeat the above steps n~1 times. - : '
In repeated trips through the array, the smallest elements ‘bubble up’ to the top. Because
of this bubbling up effect, this algorithm is called bubble sorting. The bubbling effect is
illustrated below for four items. ' S L : Hah

b
g8
&
]

=

I
212}

During the first trip, three. pairs of items are compared and interchanged whenevé
needed. It should be noted that t 1e number 80, the largest among the items, has been moveg
to the bottom at the end of the trip. This means that the glement 80 (the last item in th
new list) need not be mnaidere?::y further. Therefore, trip-2 requires only two pairs to by
compared. This time, the number 65 (the second largest value) has been moved down thé
list. Notice that each trip brings the smallest value 10 up by one level. s |

The number of steps required in a trip is reduced by one for each trip made. The entig
process will be over when a trip contains only one step. If the list contains n elements,
the number of comparisons involved would be n(n-1)/2,

v &

Program
#define N 10
- main()

{..
int i,j,n;
float median,a[n],t;
printf("Enter the number of items\n®);

. scanf("%d", &n);

/*Reading items into array a */
printf("Input %d values \n*,n);
for (i = 1; i <=n ; j44)

scanf("%f", Ba[i]);

/*Sorting begins v i
fnr{itz;i:-n-l;iH}

I /* Trip-i begins */

for (J=1; J <= ni;jr)

if (a[j] <= a[j+1])

{ /* Interchanging values o
t = aljl;
ali] = a[j+1];
afi+1] = t;

else
continue ;

2. Calculation of Standard Deviation

In Statistics, standard deviation is used to measure deviation
formula for calculating standard deviation of n items is

|
| 213

} /* sorting ends */
/* calculation of median */
if(ns2-==0)
median = (a[n/2] + a[n/2+1])/2.0
glse ;
median = a[n/2 + 1];
/* Printing */
for (1 =1; 1 <=n; iss)
printf(*sf *, a[i]);
printf("\n\nMedian is ¥f\n", median);

OQutput

Enter the number of items

5

Input 5.values

1.111 2.222 3.333 4.484.5.555

5.555000 4.444000 3.333000 2.222000 1.111000

Median is 3.333000

Enter the number of items
6

Input 6 values
358946

9.000000 8.000000 6.000000 5.000000 4.000000 3.000000
Median is 5,500000

$ = Jvanance

variance = ~I:— g{xi -m)’

] n
m= meéan = — E X,
n

214 -
The algorithm for calculating the standard deviation is as follows:

1. Read n items.

2. Caleulate sum and mean of the items.
3. Caleulate variance.

4. Calculate standard deviation.

Complete program with sample output is shown in Fig. 7.8.

o

Program
finclude <math.h>
#define MAXSIZE 100
main()
(.
int i/n;
float value [MAXSIZE], deviation,
sum, sumsqr,mean,variance,stddeviation;
sum = sumsqr = n = 0 ; :
printf(*Input values: input -1 to end \n");
for (i=1; i< MAXSIZE ; i#+)
(;
scanf("%f", A&value[i]);
if (value[i] == -1)
break;
3 sum += value[i];
: n+=1;
§)
§ mean = sum/(float)n;
; for (i = 1 ; i<= n; i++)
i {
| deviation = value[i] — mean;
A sumsqr += deviation * deviation;
variance = sumsqr/(float)n ;
stddeviation = sgrt(variance) ;
printf(*\nNumber of items : %d\n",n);
i printf(*Mean : %f\n", mean);
printf(*Standard deviation : %f\n", stddeviation);
4 } \
4 Output
Input values: input -1 to end
65 9 27 78 12 20 33 49 -1

Number of items : 8

1
|

’ Mean : 36.625000
Standard deviation : 23.510303
-. T PRSPy = e i I T i W it 5 AL e o oy 7 Gr TS s, g T P e A T

TR T s

1 g b e
-'_.r'r-.- (1] '_".-_. ” -J."r"' - f
Ol N L

|215
3. Evaluating a Test

A test consisting of 25 multiple-choice items is administered to a batch of 3 students. Correct
answers and student responses are tabulated as shown below:

llems

The algorithm for evaluating the answers of students is as follows:
1. Read correct answers into an array.

2. Read the responses of a student and count the correct ones.
3. Repeat step-2 for each student.
4. Print the results.

A program to implement this algorithm is given in Fig. 7.9. Theprogmmumthafu]luw—
ing arrays:

I

F

| key[i] - To store correct answers of items

i response[i] - To store responses of students

correcti] - To identify items that are answered correctly.

Program

#define STUDENTS 3

fdefine ITEMS 25

main()

{
char key[ITEMS+1],response[ITEMS+1]:
int count, i, student,n,

correct [ITEMS+1];

/*Reading of Correct answers */
printf(*Input key to the items\n");
for(i=0; 1 < ITEMS; i++)

A scanf(*5c”,8key[i]);
scanf("%c",8key[i]); -
key[i] = '\0';

/* Evaluation begins */
for(student = 1; student <= STUD" ; Student++)
(

/*Reading student responses and counting correct ones*/

et

i i -
T B o e e e —

216 * Programming in ANSI €

3 count = 0;

I'Jr'il'ltf[\n"]l

printf[Input respUnses of student- id\n ,Student);

for(i=0; 1 < ITEMS ; i++)

i scanf("%c" .&rESpﬂnie[i]];

g scanf("%c" ,Aresponse[i]);

i response[i] = '\0';

" for(i=0; i < ITEMS; i++)

g correct[i] = 0;

for(i=0; 1 < ITEMS ; i++)
if(response[i] == key[i])

e
TN T

:qﬁ;t = count. +1.;
correct[i] = 1 ;
)
/* printing of results */
printf(*\n");
printf("Student-%d\n", student); -
printf(*"Score is %d out of %d\n" ,cuunt. ITEMS);
printf("Response to the items below are wrong\n"):
n=0;
for(1=0; 1 < ITEMS ; i++)
if{correct[i] == 0)
-
printf("%d ",i+l);
n = n+l;

i
*
L |
I
E |
i

)
if(n == 0)
printf("NIL\n");
printf("\n");
} /* Go to next student */
/* Evaluation and printing ends */
}
Output
Input key to the items
abcdabcdabcdabcdabecdabeda

Input responses of student-1
abcdabcdabedabedabedabeda

Student-1

Score is 25 out of 25

Response to the following items are wrong
NIL

Input responses of student-2
abcddcbaabcdabcdddddddddd

— o B : | 217

Student-2
Score is 14 out of 25

Response to the following items are wrong
56781718 19 21 22 23 25

i Input responses of student-3
2333a333a3a3433333a3333a

Student-3

Score is 7 out of 25

Response to the following items are wrong
234678101112 1415 16 18 19 20 22 23 24

TR TR S

Ly

o i L T T R AT 3 T T e e, £ i
©Fig. 7.9 Progrom to evaluate responses to o mulple-chaice test

4. Production and Sales Analysis

A company manufactures five categories of products and the number of items manufactured
and sold are recorded product-wise every week in a month. The company reviews its produc-
tion schedule at every month-end. The review may require one or more of the following
information:

{a) Value of weekly production and sales.

(b) Total value of all the products manufactured.

(e) Total value of all the products sold.

(d) Total value of each product, manufactured and sold.

Let us represent the products manufactured and sold by two two-dimensional arrays M and
S respectively. Then,

M11 Mi2 Mi13 Mi4 M15
M=| M21 M22 M23 M24 M25
M31 M32 M33 M34 M35
M41 M42 M43 M44 M45

S11 512 S13 514 515
S=| 821 522 S23 S24 525
531 532 S33 S34 535
S41 542 S43 S44 S45

£ “here Mij represents the number of jth type product manufact | in ith week and Sij the
. "umber of jth product sold in ith week. We may also represent ...c cost of each product by a
i "ingle dimensional array C as follows:

“here Cj is the cost of jth type product.

|
Z'I'Bl

We shall represent the value of products manufactured and sold
namely, Mvalue and Svalue. Then,

Mvalue[i][j) = Mij x Cj
Svalue[i][j] = Sij x Cj

A program to generate the required outputs for the review meeting is shown in Fig. 7.10. The
following additional variables are used:

by two value arrays,

g
Mweek[i] = Value of all the products manufactured in week i '

:

=Y Mvalue(il(j)

Sweek(i] = Valye of all the producs in week i

- i Svaluefi]j]

I=]

., ® 3
oy

Mproduct[j] = Value of jth type product manufactured during the month

- E Mvalue[i](j] *

——
i=1

Sproduct]j] = Value of jth type product sold during the month
4
=) Svalueli](j]
i=1

Mitotal = Total value of all the products manufactured during the month

-]

= Z Mweek[i] = 2 Mproduct{j)

jm1 =1

Stotal = Total value of all the products sold during the month

i 5
= E Sweek[i]= Y Sproduct[j]

j=1

Program
main{)
|
int M[5][6],S[5][6].C[6],

Mvalue[5] [6],Svalue[5] [6],
Mweek[5], Sweek[5],
Mproduct[6], Sproduct[6],
Mtotal, Stotal, 1i,j,number:

/* Input data e |

printf (* Enter products manufactured week wise \n");
printf (® M11,M12,—, M21,M22,— etc\n");

Sr— |

|219
1
for(i=1; j<=4. 14++) i
for(j=1;j<=5; j++) :
- scanf("%d"*,8M[1][3]);: i
printf (" Enter products sold week wise\n*): f
printf (* S11,512. —

]] 5215522'_' !ttin-];
for(inl; j<=q. i++) -

i
for(3=1; je=5; jos) - g
. scanf(*%d", &S[i][4)); .
printf(® Enter cost of each product\n*);
oo for(§al; j <=5, J#+). A
<= scanf("5d",4C[4]);

f;Falue;Iatrices of production and sales o/
for(isl; i<eq; f4s) NG

forliSTl 4853410 15

i‘ 5"‘1“![!}][1] =:SLT03] * cf4];

: g d :
/*Total value of weekly production and sales */
{ur{ifl; i<=4; i++) "

- Walueli)(3) = ME]() * oy)s

Hheaitii ;;0 : |
Sweek[i] =0.;
for(j=1; j<=5; j++)

(: :

Mveek[i] += Mvalue[] [4];
Sweek[i] += Svalue[i][j];
) ;

] -

f'ththlj'vilue of product wise production and sales */
for(i=1; j<=5; j++)

Mproduct [5] = 0 ;
Sproduct[j] = o ;
for(i=1; i<=4; j44)
(
Mproduct [j] += Mvalue[i][j];
Sproduct[j] += Svalue[i][j];
) .

}

/*Grand total of production and. sales values */ 2
Mtotal = Stota) = 0;

for(i=1; i<=4; j44)
(

Mtotal += Mweek[i];
Stotal += Sweek[i];

...l‘illil*'ll'lii'li!Ili'ilt‘llt'iiliiiﬂtlllI'Ii-ititl-ii] *-."'
Selection and printing of information required ol b
ool #i#lriiiiﬂiitti! i"

printf("\n\n");
printf(" Following is the list of things you can\n");
printf(" request for. Enter appropriate item number\n");
printf(" and press RETURN Key\n\n");
printf(* 1.Value matrices of production & sales\n");
printf(" 2.Total value of weekly production & sales\n");
printf(®’3.Product. wise lunlhly #a1ue of production &");
printf(" sales\n");
printf(}) 4.Grand total value of prbdu:tinn b sales\n");
printf(” 5.Exit\n"); " LATEIN
number = 0;
while(1)
{ /% Beginning of while. Iunp *f
printf("\n\n ENTER YOUR EHEICE '}.
scanf("%d",&number); : :
printf(*\n*);
if(number == §)
|

A M - e PR 2

printf(® 600D BYE\n\n");
break; :
)
switch(number) 3
{ /* Beginning of switch *f
[* VALUE MATRICES */
case 1:
printf(® VALUE MATRIX OF PRODUCTION\n\n"):
for(i=1; i<=4; i++)
l
printf(" Week{%d)\t",i)i
for(j=1; j <=5; j++)
printf(*%7d", Mvalue[i]l[i]);
printf(*\n");
}
printf(*\n VALUE MATRIX OF SALES\n\n");
for(i=1; i <=4; i+s)
{
printf(* Week(%d)\t*,i);
for(j=1; j <=5; j++)
printf("%7d*, Svalue[i]1[j]);
printf("\n");
)

| 221

break;

/* WEEKLY ANALYSIS %/

case 2:

printf(" TOTAL WEEKLY PRODUCTION & SALES\n\n");
printf(" PRODUCTION SALES\n");
printf(® = emeea -= \n*);
for(i=1; 1 <=4; i++)
{
printf(* Week(%d)\t", i); _
printf("s7d\ts7d\n", Mweek[i], Sweek[i]):
} ST
break;

/* PRODUCT WISE, Anntrsls*;

._case. 3:.

prtntf{r.Pnnoucr_u1§E TOTAL PRODUCTION &%);
printf(® SALES\n\n"

printf(" PRODUCTION SALES\n");
printf(® | R N ¥ 1 = W);
for(j=1; § <=5; j++)

ti

printf{i.Prnduct{#d]\t'..i}:
printf(*57d\t¥7d\n" ,Mproduct[j],Sproduct[i]);
} \

break;

/* GRAND TOTALS */

case 4:
printf(* GRAND TOTAL OF PRODUCTION & SALES\n"):
printf("\n Total production = %d\n", Mtotal):
printf(® Total sales = %d\n", Stotal):

break;
/*DEFAULT*
default :
printf(® Wrong choice, select again\n\n");:
break;

} /* End of switch */
} /= End of while loop */ :
printf(* Exit from the program\n\n®);

} /* End of main */

Enter products manufactured week wise

M11l, M12, ————, M21, M22, ———- etc
11 15 12 14 13
13 13- 14 15 12
12 16 10 15 14
14 11 15 13 12

Enter products sold week wise
511,512,——~~, §21,522,~—-- etc
10 13 9 ¥ 11

12 .10 12 14 ‘110

I 14 10 14 12

14:30 .13 .11 .10

Enter cost of each product
1020 30-15 25 : s

Following is the 1ist of things you can
request “for. Enter appropriate item number
and préss RETURN key | _
1.Value matrices of production & sales
Z.Tntf value of weekly production & sales =
3.Product_wise monthly value of production & sales
4.6rand total value of production & sales
L7 5 2 TR L L O
. ENTER YOUR CHOTCE:}
" VALUE MATRIX OF PRODUCTION '
Week(1) 110 300 - 360 210 325
Week(2) 130 260 420 225 300
Week(3) 120 320 - 300 225 350
Week(4) 140 220 450 185 300
VALUE MATRIX OF SALES
Week(1) 100 260 270 © 180 275
Week(2) 120 200 360 210 250
Week(3) 110 280 3000 210 300
Week(4) 120 200 390 165 250
ENTER YOUR CHOICE:2 |
TOTAL WEEKLY PRODUCTION & SALES)
PRODUCTION SALES

Week (1) 1305 1085
Week(2). 1335 1140
Week(3) 1315 1200
Week (4) 1305 1125

ENTER YOUR CHOICE:3 |
PRODUCT_WISE TOTAL PRODUCTION & SALES
PRODUCTION SALES

Product(1) 500 450
Product(2) 1100 940
Product (3) 1530 1320
Product(4) 855 - 765
Product (5) 1275 1075

ENTER YOUR CHOICE:4
GRAND TOTAL OF PRODUCTION & SALES

Total production = 5260
Total sales = 4550
ENTER YOUR CHOICE:S

GOOD BYE

Exit from the program

7.1 State whether the following statements are true or false.
(a) The type of all elements in an array must be the same.
(b) When an array is declared, C automatically initializes its elements to zero.
(c) An expression that evaluates to an integral value may be used as a subscript.
(d) Accessing an array outside its range is a compile time error.
(e) A char type variable cannot be used as a subscript in an array.
(f) An unsigned long int type can be used as a subscript in an array.
(g) In C, by default, the first subscript is zero.
(h) When initializing a multidimensional array, not specifying all its dimensions is
AN ermor.
(i) When we use expressions as a subscript, its result should be always greater than
ZET0,
(j) In C, we can use a maximum of 4 dimensions for an array.
(k) In declaring an array, the array size can be a constant or variable or an expres-
B1on.
(I} The declaration int x[2] = [1,2,3]); is illegal.
7.2 Fill in the blanks in the following statements.

(a) The variable used as a subscript in an array is popularly known as
variable.

(b) An array can be initialized either at compile time or at

(c) Mmrm&tedumngmﬂmﬁmchmntmhmamrafermdtnaﬂ array.

(d) An array that uses more than two subscript is referred to as array.

(e) is the process of arranging the elements of an array in order.

7.3 Identify errors, if any, in each of the following array declaration statements, assuming
that ROW and COLUMN are declared as symbolic constants:
(a) int score (100);
(b) float values [10,15];
(c) float average[ROW], [COLUMN];
(d) char name[15];
le) int sum[];
(0 double salary [i + ROW]
(g) Tong int number [ROW]
(h) int array x[COLUMN];

4.5 [T

24— - Programningin ANSI €

7.4 Identify errors, if any, in each of the following initialization statements.

(@) int number[] = {0,0,0,0,0);

(b) float item[3][2] = {0,1,2,3,4,5}:

(c) char word[] = AT IRY, R '‘A', 'Y'});

(d) int m[2,4] = Hﬂ,ﬂ.ﬂ.ﬂ}{'l.l.l.l]l;

(e) float result[10] = o;

7.5 Assume that the arrays A and B are declared as follows:

int A[5][4];

float B[4]:

Find the errors (if any) in the following program segments.

(a) for (i=1; j<=5; i++l_1
for(J=1; j<=4;" jo+)"
A[i1[3] = o;

(b) for (i=1: itd;,_iﬁ};
scanf("%f*, B[i]);

Lripde)- for (1=0;. 5<=4; f4+)
B[1] = B[i]+i;

(d) for (i=4;-i>=0; i--) , , :
for (j=0; j<a; j++) . ; |
A[f]“] - B[J] + 1.0; ' ~

7.6 Write a for loop statement that initializes all the dingonal elements of an array to goel

and others to zero as shown below. Assume 5 rows and 5 columns. .

| 0 0 0 0] 0
0] 0 0 | 3 O 0 3
0 0 | 0 i R 0 e
e el R 0 0 T s 1

7.7 We want to declare a twd-dimensional integer type array called' matrix for 3 row
5 columns, Which of the following declarations are correct? 3
(a) int maxtrix [3],[5);
(b) int matrix [5] [3];
() int matrix [1+42] [2+3]:
(d) int matrix [3,5];
(e) int matrix [3] [5];

7.8 Which of the following initialization statements are correct?
(a) char stri[4] = *GO0D";
(b) char str2[] = *c",
() char str3[5] "Moon";

—

—— S 0 ~—|zzs

(d) char strd[] = ('S"*, ‘0, 'W'}:

(e) char str5[10] = *Sun":

.9 What is a data structure? Why is an array called a data structure?

10 What is a dynamic array? How is it created? Give a typical example of use of a dynamic
array.

11 What is the error in the following program?

main ()

{

int x ;

float vy [] ;

What happens when an array with a specified size is assigned
(a) with values fewer than the specified size; and
(b) with values more than the specified size.
3 Discuss how initial values can be assigned to a multidimensional array.
4 What is the output of the following program?
main ()

{
intm [] ={1,2,3,4,5)
int x, ¥y = 0;
for (x = 0; x < 5; x++)
y=y+m/[x];
printf("%d", y)
l

What is the output of the following program?
main ()
(

chart string [] = "HELLO WORLD" ;

int m;

for (m = 0; string [m] 1= "\0'; m+)

if ((m%2) == 0)
printf("%c®, string [m]);

JErogramming Exercises

i1 Write a program for fitting a straight line through a set of points xy)i=1,..
The straight line equation is

y=mx+c
andtheva]uesufmaudl:aregivenhy

o HI(!-]}".]—IEIIHE}H)
“[I"r”_[mi]z
c= -I-:— (Zy;,-mEx)

All summations are from 1 to n.

226|

7.2 The daily maximum temperatures recorded in 10 cities during the month of January
(for all 31 days) have been tabulated as follows:
i City .
| 2 BT vimh iare s o s amllinn's - 10 ~'

i "I IWH—'E
e

31

Write a program to read the table elements into a two-dimensional array tempeéfas
ture, and to find the city and day corresponding to_ . e
(a) the highest temperature and :
(b) the lowest temperature.

73 An election is contested by 5 candidates. The candidates are numbered 1 to 5 ¢
voting is done by marking the candidate number on the ballot paper. Write a progi
to read the ballots and count the votes cast for each candidate using an array vag
count. In case, a number read is outside the range 1 to 5, the ballot should be col
ered as a ‘spoilt ballot’ and the program should also count the number of spoilt bal

7.4 The following set of numbers is popularly known as Pascal’s triangle.

1

1 1

1 2 1

1 3 3 1

1 4 6 4]

1 5 10 10 5 1

If we denote rows by i and columns by j, then any element (except the bounda s
ments) in the triangle is given by -

Pi=Pinjt TP

Write a program to calculate the elements of the Pascal triangle for 10 rows :

the results.
7.5 The annual examination results of 100 students are tabulated as follows:

Roll No. Subject | Subject 2 Subject 3

?-

3 PR

18

79

LS g BT

. rr R — 227
Write a program to read the data and determine the following;
(a) Total marks obtained by each student.

(b) The highest marks in each subject and the Roll No. of the student who secured it,
(c) The student who obtained the highest total marks,

al' nll lllll .I.
ill IIJ "Ih
A =
By i a, |
[by, bys... b,]
b!l bz: """ b:n
RBR=
L |

The product of A and B is a third matrix C of size nxn where _:n element of C s given
by the following equation.

E:; = z a‘rhbh_}

k=]

Write a program that will read the values of elements of A and B and produce the
product matrix (,
Write a program that fills a five-by-five matrix as follows:

* Upper left triangle with +1s

* Lower right triangle with -1s

* Right to left diagonal with zeros
Display the contents of the matrix using not more than two printf statements
Selection sort is based on the following idea:

ecting the largest array element and swapping it with the last array element leaves
AN unsorted list whose size is 1 less than the size of the original list. If we repeat this

228 | - |
7.10 Develop a program to unplumunt the bmnry search; algorithm, This technique com-
pares the search key value with the value of the element that is midway in a “sorted”
list. Then;
(a) If they match, the search is over.
(b) If the search key value is less than the middle value, then the first half of the list
contains the key value.
(e) If the search key value is greater than the mlddle 'mluu, then the secnud ha.lt
contains the key value.
Repeat this “divide-and-conquer” strategy until we have a mntch. If the list is mdum%
to one non-matching alement, then the list does not contain the key value, ' .
Use the sorted list created in Exercise 7.9 or uSe any other sorted list. ?7‘:
7.11 Write a program that compute the length of a given character string. ;j'iﬁ

7.12 Wnl:nnprngrnm that will count the number occurrences of a specified character ina,
given line of text. Test your program, i

7.13 Wnte;progumtnrendamatruufmmxnnndpnntmtrmmpoaa 4
7.14 Every book published by international publishers should carry an International Stans
dard Book Number (ISBN). Itis a lﬂcharncteripartnumberanshnwnbelw
0-07-041183-2

The first part denotes the region, the second represents publisher, the third iden
the book and the fourth is the check digit. The check digit is computed as follows: °

Sum = (1 first digit) + (2 x second digit) + (3 x third digit) + - - - - +(9xnimhdigm

given ISBN number and checks whether it represents a o valid ISBN.
7.15 Write a program to read two matrices A and B and print the following:
~ (a) A+B;and
(b) A-B.

S0

ted®

| Character Arrays
and Strings

8.1] INTRODUCTION

A string is a sequence of characters that is treated as a single data item. We have used
strings in a number of examples in the past. Any group of characters (except double quote
sign) defined between double quotation marks is a string constant. Example:

“Man is obviously made to think.”
If we want to include a double quote in the string to be printed, then we may use it with a
back slnsh as shown below,
W Man 15 obviousty made to think,\” said Puscal.™
For example,

printf (“\" Well Done !"\");
will output the string

“Well Done '™

while the statement

printf(® Well Done i*);

®ill output the string

Well Done !

Character strings ure often used to build meaningful and readable programs, The com-
Mon operations performed on character strings include:

* Reading and writing strings.

* Combining strings together,

* Copying one string to another,

* Comparing strings for equality

* Extracting a portion of a siring

] : P

In thig chapter we shall discuss these operations in detail and examine library functions Thi
that implement them. tion fi

(3 INITIALIZING STRING VARIABLES

C does not support strings as a data type. However, it allows us to represent strings as : | is not
character arrays. In C, therefore, a string variable is any valid C variable name and is al-
Wy virad us an array of characters. The general form of declaration of a string vunnble ;
is - ' 3
o

is not

The size determines the numb-?r of characters in the string name. Some examples are:
' char city[10]; « e 3
char name[30];

When the compiler assigns a character string to a character array, it automatically sup 8|
plies a null character ('\0) at the end of the string. Therefore, the size should be equal to
maximum number of characters in the string plus one. ‘4

Like numeric arrays, character arrays may be initialized when they are declared. C per-%
mits a character array to be initialized in either of the following two forms:

char city [9] = " NEW YORK *;
char city [9)={"N',"E',"W"," ','Y',"0",'R",'K",'\0')}; .
The reason that city had to be 9 elements long is that the string NEW YORK contains 8
characters and one element space is provided for the null terminator. Note that when wi

initialize a character array by l1st|ng its elements, we must supply explicitly the null te ,,i_
nator, '

C also permits us to initialize a character array mthuut specifying the number of eI
ments. In such cases, the size of the array will be determined automatically, based on thé
number of elements initialized. For example, the statement N

char string [] = ('6','0*,'0",'D","\0"};
defines the array string as a five element array.

We can also declare the size much larger than the string size in the initializer. That is, th
statement.

char str[10] = "GOOD";

18 permitted. In this case, the computer creates a character array of size 10, places the vall
“"GOOD" in it, terminates with the null character, and initinlizes all other elements to NUL
The storage will look like:

ik ..!,'H-'"l!r-ﬂ"t* PreaEre 8

However, the following declaration is illegal.
char str2[3] = "G0O0D";

aacter Arraysand Strings B Lo

ns This will result in a compile time error. Also note that we cannot separate the initializa-
tion from declaration. That is,

char str3[5];
str3 = “GO0D";

ag . | is not allowed. Similarly,

;l' ; char s1[4] = "abe";
I% char s2[4];
e $2 = s1; /* Error */

is not allowed. An array name cannot be used as the left operand of an assignment operator.

T e -'1'-,.- A-....'_.....'...n.. R
e l_-'.;-ua:llill||il l_.l'|| J
\ e] ..r-.,

‘-i:wl-‘- Iﬂ-"‘l--iwuu—-“nm'ﬂ# Pk "'..'h

You must be wondering, *why do we need a 2rminating null character?” As we
know, a string is not a data type in C, but it is considered a data structure stored in
an array. The string is a variable-length structure and is stored in a fixed-length
array. The array size is not always the size of the string and most often it is much
larger than the string stored in it. Therefore, the last element of the array need not
represent the end of the string. We need some way to determine the end of the
string data and the null character serves as the "end-of-string” marker.

| i
{
1 3| READING STRINGS FROM TERMINAL

.ji sing scanf Function

iMhe familiar input function seanf can be used with %s format specification to read in a

ftring of characters. Example:
char address[10]
scanf("%s", address);

ihe problem with the seanf function is that it terminates its input on the first white space it
finds, A white space includes blanks, tabs, carriage returns, form feeds, and new lines.
bherefore, if the following line of text is typed in at the terminal,

NEW YORK

g'en only the string “NEW™ will be read into the array address, since the blank space after
8¢ word ‘NEW will terminate the reading of string,

The seanf function automatically terminates the string that is read with a null character
$0d therefore the character array should be large enough to hold the input string plus the
| character. Note that unlike previous scanf calls, in the case of character arrays, the
Mipersand (&) is not required before the variable name,

232} | o o
The address array is created in the memory as shown below: ;
T A T R T
A 4. 2 %, 8% & 8 T 8 9
Note that the unused locations are filled with garbage. _ i
l:IIl‘“ we want to read the entire line “NEW YORK", then we may use two character arrnysqf
appropriate sizes. That is, -

char adrl[5], adr2[5]:
scanf("%s 4s", adrl, adr2);

with the line of text pry |
‘ NEW YORK

will assign the string “NEW" to ,ﬁm and “YORK" to adrZ.
Wilte o program to read ‘a series of words from o ferminal using scantl

function. w

The program shown in Fig. 8.1 reads four words and displays them on the screen. Note thi
the string ‘Oxford Road' is treated as two words while the string ‘Oxford-Road’ as one Worg

T

e

Iruyr;u
main{)

i
char word1[40], word2[40], word3[40], wordd[40];

printf(*Enter text : \n");

scanf(*%s %s", wordl, word2);

scanf("%s*, word3);

scanf("4s", wordd);

printf("\n");

printf("wordl = &s\nword2 = %s\n", wordl, word2);
printf("wordd = %s\nwordd = %s\n", word3, wordd);

)

Output

Enter text :
Oxford Road, London M17ED

word]l = Oxford
word? = Ropad,
wordd = London
word4d = MI17ED

Enter text :
Oxford-Road, London-M17ED United Kingdom
wordl = Oxford-Road

. s

e e e Charactér Arrays and Strings {233

word? = London-M17ED
wordd = United

i wordd = Kingdom
__-':J!.___ S o ,

— —

Fig. 8.1 Reading a series of words using scanf function

We can also specify the field width using the form %ws in the scanf statement for reading a
specified number of characters from the input string . Example:

scanf("%ws", name);
Here, two things may happen.

L. The width w is equal to or greater than the number of characters typed in. The entire
string will be stored in the string variable,

2. The width w is less than the number of characters in the string. The excess characters
will be truncated and left unread.

Consider the following statements:
char name[10];
scanf("%5s", name);
The input string RAM will be stored as:
[_H Al M \ul? ? TT;FI‘? 7
0 1 2 3 4 5 & T B
The input string KRISHNA will be stored as:

[«[w] sJ dEE -;'"L? a

0 1 2 fi T B g

Reading a Line of Text

We have seen just now that scanf with %s or %ws can read only strings without
Whitespaces, That is, they cannot be used for reading a text containing more than one word,
owever, C supports a format specification known as the edit set conversion code %l. .] that
€an be used Lo read a line containing a variety of characters, including whitespaces. Recall
t we have used this conversion code in Chapter 4. For example,
the Program segment

char Tine [80];
scanf(*%[*\n]", line);
printf(“%s", 1ine);

Will read a line of input from the keyboard and display the same an the screen. We would

very rarely use this method, as C Bupports an intrinsic string function to do this job. This is
Bcussed in the next section.

ke rl-".‘ o T ey ‘ol
g T = L T
Frowramming Il ANSIC™

mF 1

Using getchar and gets Functions

'-'I

tion call takes the form:

Note that the getchar I'und};
Exampie 812] Write o prog

fam to read a line of text containing a serles of words frdgR
the terminal, \ "

end of line), the reading loop is terminated and the newline ch
acter is replaced by the null character to indicate the end of character string,

When the loop is exited, the value of the index o is one number higher than the
character position in the string (since it has been incremented after assigning the new chil

acter to the string). Therefore the index value e-1 gives the position where the null cha
18 to be stored,
Program
finclude <stdio.h>
main()
{
char 1ine[81], character;
int c;
c~0;
printf("Enter text. Press <Return> at end\n");
do '
{
character = getchar();
Ine[c] = character;
CH;

} '
while(character |» '\n'});
c*c =1

Iinefc] = *"\0';
printf("\n¥%s\n", line);

|
| 235

e Character Arrays and Strings —

Output
Enter text, Press <Return> at end

Programming in C is interesting.

Programming in C 1s Interesting.

Enter text. Press <Return> at end

National Centre for Expert Systems, Hyderabad.
National Centre for Expert Systems, Hyderabad.

Fig. 8.2 Progrom to read a line of text from terminal

Another and more convenient method of reading a string of text containing whitespaces is
to use the library function gets available in the estdio.h> header file. This is a simple func-

tion with one string parameter and called as under:
gels (str);

str is a string variable declared properly. It reads ch
until a new-line character is encountered and then ap

Unlike seanf, it does not skip whitespaces. For example
char line [80]:

gets (1ine);

printf ("%s", line);
reads a line of text from the keyboard and displays it on the screen. The last two stat
may be combined as follows:

aracters into str from the keyboard
pends n null character to the string.
the code segment

ements

printf("ss", gets(line)):

(Be careful not to input more character that can be stored in the string variab

does not check array-bounds, it may cause problems.)
C does not provide operators that work on strings directly. For instance we cannot asSign

one string to another directly. For example, the assignment statements.
string = "ABC";
stringl = stringd;
y want to copy the characters in string2 into stringl, we may do so

l¢ used. Since C

are not valid. If we reall
on a character-by-character basis,

ther and count the number

Write a program to copy one shing into ano
of charocters copied.

The program is shown in Fig. 8.3. We use n for loop to copy the characters contained inside
string2 into the stringl. The loop is terminated when the null character is reached. Note
that we are again assigning a null character to the stringl.

el AN =
Program
main()
{
char stringl(80], string2[80];
int 1:
i printf("Enter a string \n");

printf(*7"):
scanf("4s", string2);
for(120 ; string2[1] 1= "\0'; 1+4)
(| stringl[i] = string2[i};
stringl[i] = '\0';
printf("\n");
printf(*%s\n", stringl);
printf(*Number of characters = %d\n*, i);

)

Output ;
Enter a string
!Manchester

Manchester
Number of characters = 10

Enter a string
Westminster

Westminster
Number of characters = 11

1 ;] — —- - — - T
W . ET S A m R 4 T '--:'-'-'"'."'l"!_-,-.'vl.1 A

“Fig. 8.3 Copying one string into onother =~ = =1 10

8.4 WRITING STRINGS TO SCREEN

Using printf Function

Wao have used extensively the printf function with %s format to print strings to the & ".I‘
The format %s can be used to display an array of characters that is terminated by thed
character. For example, the statement

printf("%s", name);

can be used to display the entire contents of the array name. -
We can also specify the precision with which the array is displayed. For instance, the
fication : €

9.8
indacates that the first four churarters are 1o be printad in & Geld wadth of 10 (ulum

- — e Character, Arrays and Strings ————— 237

However, if we include the minus sign in the specification (e.g., %-10.4s), the string will be
pinted left-justified. The Example 8.4 illustrates the effect of various %s specifications.

[Example 8.4 Write a program fo store the string “United Kingdom” in the array country
ond display the string under various format specifications.

The program and its output are shown in Fig. 8.4, The output illustrates the following fea-
wres of the %s specifications,

1. When the field width is less than the length of the string, the entire string is printed.
2, The integer value on the right side of the decimal point specifies the number of char-
acters to be printed.

When the number of characters to be printed is specified as zero, nothing is printed.
The minus sign in the specification causes the string to be printed left-justified.

The specifieation % .ns prints the first n characters of the string.

=1

=

= = S = e

Program
main()
{
char country[15] = *United Kingdom";
printf("\n\n");
printf("*123456789012345*\n");
printf(" ————- \n");
printf("515s\n", country);
printf(*%5s\n", country);
printf(*%15.65\n", country):
printf("%-15.6s\n", country);
printf("%15.0s\n", country):
printf(*%.3s\n", country);
printf(®"%s\n", country):
printf(*—-~-- \n®);
J
Dutput
123456789012345

United Kingdom
United Kingdom

United
United

Uni
United Kingdom

S = T —— — = v

Fig. 8.4 Writing strings using %s format

T — ca o

Bl et T T opei
— Proprammingi A sl
EJBI 1 i TRrameming ir. # G —

The printf on UNIX Supports another nice
precigion. For instance

feature that allows for variable field width Elr

| 3
printf("5*.*s\n", w, d, string); ;
prints the first d characters of the string in the field width of w.

This feature comes in hand y for printing a sequence of characters.

Example 8.5 illustrate
this,

Example 55} Write a progrom using for loop to print the following output:

El;rﬂgrummlng
CProgramming

The outputs of the program in Fig. 8.5
are shown in Fig. 8.6, which further illustrate

specifications,
Program

main()

{
int ¢, d:
char string[] = "CProgramming”;
printf("\n\n");
primtf(e e ___ \n*):

fnr{l:'—'ﬂ:c'-'=ll‘.l3++}
{
d=¢c+];

printf{“H-lE."slkn". d, string);

LARLLL Gl SOt e [\n");
for(ce1l;c50;)
{

CPro
CProg
CProgr |
CProgra |
CProgram

printf("~

CP

printf['!%-lz.*sjin'. d,

cp

CPr

CPro

CProg
CProgr
CProgra
CProgram
CProgramm
CProgrammi
CProgrammin
CPrngraming
EFruqramming

CProgrammin
CProgrammi
CProgramm
CProgram
CProgra
CProgr
CProg
CPro
CPr

CProgr|
CProgra|
(Program|

——————————— \n*);

240 |

* CProgramm CProgramm| Cj
CProgrammi CProgrammi | cl
CProgrammin CProgrammin |
CProgramming CProgramming |
CProgramming ~CProgramming| ¢
CProgrammin CProgrammin | cl
CProgrammi CProgrammi | |
CProgramm CProgramm| C|
CProgram CProgram| C|
CProgra CProgra| C|
CProgr CProgr| Cl
CProg CProg| C|
CPro CPro| C|
CPr CPr| o]
cp CP| |
(o Cl cl
(a) %12.%s (b) %.*s (c) %*.1s

Using putchar and puts Functions

Like getchar, C supports another character handling function

ues of character variables, It takes the following form:

Exanmple:

putchar (ch);
The function putchar requires one parameter. This statement is equivalent to;
printf(*%c®, ch);

We have used putchar function in Chapter 4 to write characters to the sereen. We ean
this function repeatedly to output a string of characters stored in an array vaing o K

'|_; > :"H
a i_ 4"[".q

putchar to output the?

char name[6] = "PARIS"
for (1=0, 1<5; i++)
putchar(name[i];
putchar('\n");
Angther and more convenient way of printing string values is to use the function putsl
clared in the header file <stdio.h>. This is a one parameter function and invoked as unt

puts (str);

where str is a string variable containing a string value. This prints the value of the str
variable str and then moves the cursor to the beginning of the next line on the screen. B
example, the program segment

e e Character Atrays and Strngs ————————— | 244

char 1ine [80];

gets (line);

puts (line);
reads a line of text from the keyboard and displays it on the screen. Note that the syntax is
very simple compared to using the seanf and printf statements,

[8.5] ARITHMETIC OPERATIONS ON CHARACTERS

C allows us to manipulate characters the same way we do with numbers. Whenever a char-
acter constant or character variable is used in an expression, it is automatically converted
into an integer value by the system. The integer value depends on the local character set of
the system.

To write a character in its integer representation, we may write it as an integer. For
example, if the machine uses the ASCII representation, then,

x = 'a';
printf("%d\n",x);

will display the number 97 on the screen,

It is also possible to perform arithmetic operations on the character constants and vari-
ables. For example,

x = 'zg'=l;

is a valid statement. In ASCII, the value of ‘2’ is 122 and therefore, the statement will assign
the value 121 1o the variable x.

We may also use character constants in relational expressions. For example, the expres-
Kion

ch »>= 'A' &k ch <= '’

would test whether the character contained in the variable eh is an upper-case lotter
; We can convert o character digit to its equivalent integer value using the following rela-

onship:

x = character - '0';
Where x is defined as an integer variable and character contains the character digit. For
eximple, let us assume that the character contains the digit ‘7",
en,
x = ASCII value of '7" — ASCII value of '0"
= 55 - 48
- T

The ¢ library supports a function that converts a string of digits into Lheir integer values.

& function takes the form

X = atoi(string);

X is an integer variable and string is n character array containing a string of digits. Con.
Sider the following segment of a program:

number = “1988";

year = atod (number) :

242
number is a string varinble which is . ' - |

v) gned the string constant “1988", The functi 3
converts the nttring 1988" (contained in number) to its numeric equivalent 1988 ::d“ﬂa
Signs 1l Lo the integer variable year, String conversion functions are stored in the header ﬁlé

<std lib he.

[Excrmple 8.6] Wiite a program which would print the alphabet set b
e ¢ o
decimal and character form. oL _

The vrogram is shown in Fig. 8.7. In ASCII character set, the decimal numbers 65 to 9
Fepresent upper case alphabets and 97 to 122 represent lower case alphabets. The valua
from 91 to 96 are excluded using an if statement in the for loop. 1

Il.r
T

Program

main() f
char ¢;
printf("\n\n"); .
}'ur(c-ﬁﬁ;c-:-lzza_c-c*li

if(c > 90 & ¢ <97:)
continue;
printf(*|%4d - %¢ ", ¢, c);

printf(*|\n");

}

Dutput
| 65 - A | 66 -B |67 -C|68-D|69-E]70-F
|71 -G |72 -0 | 73-1|74-0]725-K]76-1
| 77- M| 78 -N| 79 -0] 80 -P] B1-0Q] 82 -R
| 83- S| B84 -T| 85-U| 86-V| 87-M| 88 -X
| B9- Y| 90 -2 97 -a 98-b| 99 -¢| 100 - d
|101 - e| 102 - f| 103 - gl 104 - h| 105 - 1] 106 - j
(107 - k| 108 - 1} 109 - m| 110 - n] 111 - of 112 - p
|113 - q| 118 - r| 115 - s| 116 - t| 117 - u| 118 - v
|119 - w] 120 - - 2|

x| 121 - y| 122

6] PUTTING STRINGS TOGETHER

Just as we cannot assign one string to another directly, we cannot join two strings togeth
by the simple arithmetic addition. That is, the statements such as

stringd = stringl + stringZ;
string2 = stringl + "hello®;

— - Character Arraysand Serings — — —] 243

are not valid. The characters from stringl and string2 should be copied into the stringd
e after the other. The size of the array string3 should be large enough to hold the total

characters,
The process of combining two strings together is called concatenation. Example 8.7 illus-

trates the concatenation of three strings.

The names of employees of an organization are stored In three arays,

namely first_nome, second_nama, and last_name. Write a progrom o
co~catenate the three parts into one string to be called nome.

The program is given in Fig. 8.8, Three for loops are used to copy the three strings. In the
first loop, the characters contained in the first_name are copied into the variable name
until the null character is reached. The null character is not copied; instead it is replaced by
s space by the assignment statement

name[i] = ' '
Similarly, the second_name is copied into name, starting from the column just after the
space created by the above statement. This is achieved by the assignment statement
name[i+j+1] = second name[j];

If first_name contains 4 characters, then the value of i at this point will be 4 and therefore
‘the first character from second_name will be placed in the fifth cell of name. Note that we
| have stored a space in the fourth cell.
In the same way, the statement

name[i+j+k+2] = last_name[k];

i used to copy the characters from last_name into the proper locations of name.
At the end, we place a null character to terminate the concatenated string name. In this

example, it is important to note the use of the expressions i+j+1 and i+j+k+2,

=y = — — — ———e L ——

——
main()

int 1, J. k ;
char first_name[10] = ("VISWANATH"] ;
char second_name[10] = ["PRATAP"}
char last name[10] = {"SINGH"} ;
char name[30] ;
/* Copy first_name into name "/
for{ 1 = 0 ; first_name[i] 1= '\0" ; i++)
name[i] = first_name[i] ;
/* End first_name with a space */
name[1] = ' " ;
/* Copy second name into name */
for(§ = 0 ; second name[J] != '\0' ; j++)
name[i+j+1] = second name[]] ;
/* End second name with a space */

s

name[i+j+1] = + » : 4
/| /* Copy last_name into name */

/ for(k = 0 . Iast_name[k] = "\0';: kes)
g name[f+j+k+2] = last_name[k] .

; /* End name with 3 null character *f

F name[i+j+k+2] = '\qge ;
; printf(*\n\n") ;

i Printf(*ss\n", name) .
b }

! Output

| VISWANATH PRATAP SINGH

r.':'_. AL LESAerr FER I Np— o =T Tutlha g

if(namel == name2)
if(name == “ABC")

while(stri[i] = str2[i] aa

strifi] 1= oo
84 str2[i) 1= '\gv)

1= j+];:
I (strifi] == g &b str2[{] == ‘\0')
Printf("strings are equal\n"),
else

printf("strings are not equal\n"),
-r-'.T:_'-_F-_-E'__-t' T Sy -.I-'.E:_..':-_'-ﬁ:.Thn'_-I-E-T;L:ﬂ‘.‘:J-.-'.'- T e, T Carl R T

e T Ty e

STRING-HANDLING FUNCTIONS

~ Character Arrays and Strings — | 245
i Function Atfion =" 5o :;'f :
I T e a . ¥ .
i streati) cOncatenales two strings
strempy) Compares two strings
strepy() COpies one string over another
strien()

finds the length of a string
We shall discuss briefly how each of these functions can be used

in the processing of strings,

: strcat() Function

The streat function joins two strings together. It takes the following form:

PRITRA R _.=.";JEI._'J_._‘.,'rfz'r_-}'.?:.‘.t}-f-j:p-‘u. 23

1’5

appended to stringl. It does so by re
placing string2 from there. The stri
sider the following three strings:

Parid= |

Execution of the statement

strcat(partl, part2);

will result in:

'
T g It el)
Pam:[& E....R_?" _GJ{JJDEtI 10 :

While the statement
Will result in:

We must make sure that the size of string1 (to which string2 is appended) is large en ' i
to accommodate the final string. '
streat function may also append a string constant to a string variable. The folle v :.' ,

valid:
strcat(partl,"G00D");
C permits nesting of streat functions. For example, the statement
strcat {strut{ltringl string2), stringld); .
:;Hnnwm and mnmtﬁ{:nhunﬂihothmuh'ingutogn’thnr The resultant string is storeg
gl. . o .

stremp() Function st

The stremp function compares two strings identified by the arguments and has a
they are equal. If they are not, it heis the numeric difference between the first nonmate
l:harnutern in the strings. It takes the form:

stringl and string2 may be string variables or string constants. Examples are: |

strcmp (namel, name2);

strcmp(namel, "John®);

strcmp(“Rom”, "Ram®); :
Our major concern is to determine whether the strings are equal; if not, which is alphabgt
cally above. The value of the mismatch is rarely important. For example, the statemen|

stremp(“their”, “"there");

will return a value of -9 which is the numeric difference between ASCII “i* and ASCH
That is, “i” minus “r" in ASCII code is 9. If the value is negative, stringl is alphabeti
above string2.

strepy() Function
The strepy function works almost like a string-assignment operator. It takes the form:

L
£

T

and assigns the contents of string2 to stringl. string2 may be a character array
or a string constant. For example, the statement

strepy(city, "DELHI®);
will assign the string “DELHI" to the string variable eity. Similarly, the statement

strepy(cityl, city2):

e Character Arrays and Strings e — ’ 247

will agsIEn LI Conient e siring vartable city to the stning varable Clivi. 1ne size of
array cityl should be Jarge enough o receive the contents of city2,
the arra :

strlen() Function

This function counts and returns the number of characters in a string. It takes the form

o= sl h.'ll{hll‘lng.'li

Where n 12 an imteger variable, which receives the value of the length of the string. The
argument may be u string constant. The counting ends at the first null character,

ﬁnmpla E.{Ll 51, 82, ond s3 are three string variobles. Write a progrom to read two

~ sinng constonts into 1 and $2 and compare whather they are equal or
nal. it they are not, join them together. Then Copy the contents of 81 1o
the variable s3. At the end, the program should pnnt the contents of all
the thwee variables and their lengths

The program is shown in Fig. 8.9, During the first run, the input strings are “New” and
York", These strings are compared by the statement
x = stremp(sl, s2);
Bince they are not vqual, they are joined together and copied into 3 using the statement
strepy(s3, s1);
The program outputs all the three strings with their lengths

During the second run. the two strings s1 and s2 are equal, and therefore, they are not
Joined together. In this case all the three strings contain the same string constant "London”

Program

4 F] S L EU), "I-..':'i.;:'l':.--]. ‘:qII_EE'Jl;.
t =, 11, 12, 13

("\ninEnter two string constante \n"):

'
5" 'i||. .\;‘:l}.
t £l ang 52 v/
Il"h -ll L]p
¥ ".r

o .-~',.';'"-n'-.-.'..'r'|r'.|]rJ are not equal \n"):

sircat(sl, s2): /™ Joining s1 and <2 *

pringi | ‘.H".r'-"_:[r‘-r'lq]s are equal \n"):

il 55
-
-
=]
¥

nath of strings

ey

SHEPYL) Function

The strepy function works almost like a string-assignment operator. It takes the form .

-l » 2L Ay

and assigns the contents of string2 to strin
: gl. strin be
Or @ string constant. For example, the statement §2 may be a charactor array v

| . strepy(eity, "DELWI®);
will assign the string *“DELHI" to the string varinble city. Similarly, the statement

strepy (cityl, city?);

ot Gl e e

20 L

11 = strien(sl);

12 = strlen(s2);

13 = strlen(s3);

[*output */

printf("\nsl = %s\t length = %d characters\n®, si, 11); .

printf("s2 = %s\t length = %d characters\n®, s2, 12); iy

printf("s3 = %s\t length = %d characters\n®, s3, 13); i

} i

Output I

Enter two string constants
7 MNew York

§r‘.nns are not equal

}t = NewYork length = 7 characters
2 = York length = 4 characters
53/ = NewYork length = 7 chardcters

Enter two string constants
? Londen, London

Strings are equal '

s1 = London length = 6 characters j
52 = London length = 6 characters R
s3 = London length = 6§ characters '

Other String Functions
The header file <string.h> contains many more string manipulation functions, They m
be useful in certain situations,

strnepy
In addition to the function strepy that copies one string to another, we have another fuligé
tion strnepy that copies only the left-most n characters of the source string to the targt
string variable. This is a three-parameter function and is invoked as follows: !
strncpy(sl, s2, 5);:

This statement copies the first 5 characters of the source string s2 into the target strin
Since the first 5 characters may not include the terminating null character, we have to
it explicitly in the 6th position of 82 as shown below:

s1[6] ='\o';
Now, the string s1 contains n proper string.
strnemp

A variation of the function stremp is the function strnemp, This function has three
oters as illustrated in the function eall bolow:

strnemp (s1, s2, n);

Character Arrays and Strings —| 249

| I this compares the left-most n characters of 81 to 82 and returns

(a) Uif they are equal;
; (b) negative number, if 81 sub-string is less than s2: and
(e} positive number, otherwise,

ptrnoat
This is another concatenation function that tnkes three parameters as shown below:

strncat (sl, s2, n);

This call will concatenate the left-most n characters of 82 to the end of s1. Example:

Alu]a [u}_l_

Sirstr
Lis o two-parameter function that ean be used to locate a gub-string in a string. This takes
the l'n|r1|.-.

strstr (sl, s2);
strstr (sl, "ABC®);

The function strstr searches the stri ng sl to see whether the string 82 is contained in sl. If
¥es, the function returns the position of the first occurrence of the sub-string. Otherwise, it
Mturns a NULL pointer. Example

if (strstr (sl, s2) == NULL)
printf("substring is not found");
else
printf("sZ is a substring of s1*):

We also have functions to determine the existence of a character in a string. The function
tall

strche(sl, 'm');
%l locate the first occurrence of the character ‘m’ and the call
strrchre(sl, 'm');

“ill locate the last securrence of the character ‘m' in the string sl

s Tl L el

* When allocating space for a string during declaration, remember to count the
terminating null character.

Ll .| * When creating an array to hold a copy of a string variable of unknown size, we
) can compute the size required using the expression

strien (stringname) + 1.

.":';i'v. .o, When copying or concatenating one string to another, we must ensure that the
e target (destinatidf) string has enough space to hold the incoming characters,
¥ Remember that i‘u error message will be available even If this condition is not

satisfied. The copying may mremnre the memory and the program may fail in
~ an unpredictabl

* When we use strncpy to copy a specific number of characters from a source
string, we must ensure to append the null character to the target string, in case
the number of characters is less than or equal to the source string.

h-TF L TeT - TR g Tt T T TN TR Ty e e R

i ,_".I,'ﬁ'

|B9] TABLE OF STRINGS

We often use lists of character strings, such as a list of the names of students in a class, &
of the names of employees in an organization, list of places, ete. A list of names can be treal
as a table of strings and a two-dimensional character array can be used to store the enf
list, For example, a character array student[30][15] may be used to store a list of 30 namg
each of length not more than 15 characters. Shown below is a table of five cities: '

This table can be conveniently stored in a character array city by using the following de
ration:

char city[] []
(

"Chandigarh®,
"Madras”,
"Ahmedabad”,
"Hyderabad®,
"Bombay"

}i

