Decision Makihg
and Branching

=1 "L
[

51| INTRODUCTION

We have seen that a C program is a set of statements which are normally execu
sequentially in the order in which they appear. This happens when no options or’
repetitions of certain calculations are necessary. However, in practice, we have a number
situations where we may have to change the order of execution of statements based'(
certain conditions, or repeat a group of statements until certain specified conditions are me
This involves a kind of decision making to see whether a particular condition has '
not and then direct the computer to execute certain statements accordingly

C language possesses such decision-making capabilities by supporting the follow
statements: L ;

L if statement
2. switch statement ,
Jd. Conditional operator statement
4. goto statement . .
These statements are popularly known as decision-making statements. Since these stafl
ments ‘control’ the flow of execution, they are also known as control statements. r
We have already used some of these statements in the earlier examples. Here, we shal
discuss their features, capabilities and applications in more detail. i

|82 DECISION MAKING WITH IF STATEMENT

The if statement is a powerful decision-making statement and is used to control the flow
execution of statements. It is basically a two-way decision statement and is used If
conjunction with an expression, It takes the following form:

-
A

It allows the computer to evaluate the expfessiun first and then, dependiﬁg on whelh :
the value of the expression (relation or condition) is ‘true’ (or non-zero) or ‘false’ (zero), it§

Decision Making'and Branching {115

_transfers the control to a particular statement. This point of program has two paths to fol-
Jow, one for the true condition and the other for the false condition as shown in Fig. 5.1.

L gy,

Some examples of decision making, using if statements are:
1. if (bank balance is zero)
borrow money
2. if (room is dark)
put on lights
3. if (codeis 1)
person is male
4. if (age is more than 55)
person is retired
The if statement may be implemented in different forms depending on the complexity of
conditions to be tested. The different forms are:
1. Simple if statement
2. if.....else statement
3. Nested if....else statement
4. else if ladder.
We shall discuss each one of them in the next few sections.

(53] SIMPLE IF STATEMENT

The general form of a simple if statement is

if (test expression)

{
statement-block: B
)

statement-x;
Thf! ‘statement-block’ may be a single statement or a group of statements. If the test ex-
Pression is true, the statement-block will be executed; otherwise the statement-block will be
skipped and the execution will jump to the statement-x. Remember, when the condition is

|
116}

true both the statement-block and
trated in Fig. 5.2.

Consider the following segment of a program that is written fnr_pmmesing of marks '
tained in an entrance examination. .

& @ m e & & & & @

if {cat;gnry-ﬂ SPORTS)
|

} 5
printf("%f", marks); o

marks = marks + bonus_marks;

The program tests the type of category of the student. If the student belongs tot
SPORTS category, then additional bonus_marks are added to his marks before they &
printed. For others, bonus_marks are not added. p

u The program in Fig. 5.3 reads fout values a. b, ¢, and d from the termif

and evaluates the ratio of (a+b) to (c-d) and prints the resuli

c-d is not equal to zero. :

The program given in Fig. 5.3 has been run for two sets of data to see that the paths
properly. The result of the first run is printed as, : :

Ratio =-3.181818

111?

r
)

.J Hil‘l”

' {

int a, b, ¢, d;

EL float ratio;
. printf(*Enter four integer values\n");
2 scanf("%d %d %d %d", %a, &b, B¢, &d);

if (c-d != 0) /* Execute statement block “f
{

ratio = (float)(a+b)/(float)(c-d);
printf("Ratio = %f\n*, ratio);

|
© Output

Enter four integer values
12 23 34 45
Ratio = -3.181818

\ :
Enter four integer values
12 23 34 34

e e C s FIR. 29 lustration of simble ‘slaternent vl T I
e - Bhgs ~dd o Hiustralion e Lol oo U B R T R e
£ IR W E P S = i e ey s B S R L g S T e T ;

The second run has neither produced any results nor any message. During the second
run, the value of (c-d) is equal to zero and therefore, the statements contained in the
statement-block are skipped. Since no other statement follows the statement-block, program
Stops without producing any output.

Note the use of float conversion in the statement evaluating the ratio. This is
‘0 avoid truncation due to integer division. Remember, the output of the first run —3.181818
8 printed correct to six decimal places. The answer contains a round off error. If we wish to
have higher accuracy, we must use double or long double data type.

The simple if is often used for counting purposes. The Example 5.2 illustrates this.

The program in Fig. 5.4 counts the number of boys whose weight is less
than 50 kg and height is greater than 170 cm.

T'{f-‘lilmgramhumtmmomndiﬁmmeforweightmdmthufnrh&ghLThisiudm
Using the compound relation

if (weight < 50 && height > 170)

113{

i, T 1A

au!! have been equivalentl_? done using two if statements as follows: :

if (weight < 50)
if (height > 170)
count = count +1;

|
|
If the value of weight is less than 50, then the following statement is executed, whic i
turn is another if statement. This if statement tests height and if the height is greatif
than 170, then the count is incremented by 1. E |
| PI‘“I'I. ' i¥i " |

 main()

)

f. int count, i; |
float weight, height; | E |

count = 0;
printf("Enter weight and height fnr 10 boys\n");

for (i =1;'7 <=-10; i++)
{ ' :
scanf("%f %f", Bweight, Bheight);
if (weight < 50 && height > 170)

count = count + 1;
}
printf(“Number of boys with weight < 50 kg\n");
printf("and height > 170 cm = %d\n", count);

}
Output
Enter weight and height for 10 boys
45 176.5
; - ' 55 174.2
: 3 i 47 168.0
49 170.7
54 169.0
53 170.5
49 167.0
48 175.0
47 167
3170

‘Number of boys with hmght < 50 kg
and hetght > 170 cm =-3

— Decision Making and Branching

|119

Applying De Morgan’s Rule

While designing decision statements, we often Come across a situation where the
logical NOT operator is applied to a compound logical expression, like
lix&&y| |!z). However, a positive logic is always easy to read and comprehend than

a negative logic. In such cases, we may apply what is known as De Morgan’s rule 1o
make the total expression positive. This rule is as follows:

“Remove the parentheses by applying the NOT operator to every
sion component, while complementing the relational operators”

That is,

logical expres-

x becomes Ix
'x becomes x
&& becomes | |
|| becomes &&
Examples:
x && y || 1z) becomes !x || ly && z
lx <=0 || !condition) becomes x >0&& condition

The if._,

Either

2

_ Ifthe gegy €xpression
tements are execut

54| THE IF....ELSE STATEMENT

else statement is an extension of the simple if statement. The general form is
| -

If (test expression)
{
True-block statement(s)

False-block statement(s)
}

statement-x

- = . = —
X} 2 = =y | R i

ed; otherwise, the false-block statem enil(s) are executed.

cases, the control is transferred subsequently to the statement-x.

is true, then the true-block statement(s), immediately following the if
In either case,

both u:ﬂifvbioc& or false-block will be executed, not both. This is illustrated in Fig. 5.5. In

|
'IillI

Let us consider an example of munt:ing't‘l':llexnumbm: ;:l' boys .alnd girh in a class. Wa-
code 1 for a boy and 2 for a girl. The program statement to do this may be written as follo)

if (code == 1)
boy = boy + 1;.

if (code == 2)
girl-= girl+l;

TR B Y r

The first test determines whether or not the student is a boy. If yes, the number of boy
increased by 1 and the program continues to the sécond test. The second test again de!
mines whether the student is a girl. This is unnecessary. Once a student is identified &
boy, there is no need to test again for a girl. A student can be either a boy or a girl, not bo
The above program segment can be modified using the else clause as follows:

IR R

if (code == 1)
boy "= boy + 1}
else 1
. gir]l = girl .+ 1;

- XXXXXXXXXX

- - Decision Making and Branching 4121

Here, if the code is equal to 1, the statement boy = boy + 1; is executed and the control is
transferred to the statement xxxxxx_ after skipping the else part. If the code is not equal to
1, the statement boy = boy + 1; is skipped and the statement in the else part girl = girl +
1; is executed before the control reaches the statement XXXXXXXX,

Consider the program given in Fig. 5.3. When the value (e-d) is zero, the ratio is not
calculated and the program stops without any message. In such cases we may not know

whether the program stopped due to a zero value or some other error. This program can be
improved by adding the else clause as follows:

..........]

if (e-d 1 0)
{
ratio = (float)(a+b)/(float)(c-d);
printf("Ratio = %f\n", ratio);
}

else
printf("c-d is zero\n*);

||||||||||

A program fo evaluate the power series

2 3 n

X X x
e =] A — bt 4+ ODcx<]
21 3 n!

s given in Fig. 5.6. It uses if......else to test the accuracy.
The power series contains the recurrence relationship of the type

=Ty (7)) forn>1

-

T,=xforn=1
To=1

If T, (usually known as previous term) is known, then T, (known as present term) can be
¢asily found by multiplying the previous term by x/n. Then

=T+ T+ T+ ... + T, = sum
Program
#define ACCURACY 0.0001
main()

{
int n, count;
float x, term, sum;

printf(“Enter value of x:*);
scanf("5f", &x);

|
112|
n = term = sum = count = 1; g
while (n <= 100) 1B
{3 - iR
term = term * x/n; |

sum = sum + term;
count = count + 1;°
if (term < ACCURACY) E
n = 999; , e
else ¥
n=mn+l; i

v
iv] .
S printf(*Terms = %d Sum = %f\n", count, sum);

|
|

Output e 5
Enter value of x:0
Terms = 2 Sum = 1.000000

Enter value of x:0.1
Terms = 5 Sum = 1.105171

Enter value of x:0.5
Terms = 7 Sum = 1,648720

Enter value of x:0.75
Terms = 8 Sum = 2,116997

Enter value of x:0.99
Terms = 9 Sum = 2.691232

Enter value of x:1
g * Terms = 9 Sum = 2,718279

The program uses count to count the number of terms added. The program stops wi
the value of the term is less than 0.0001 (ACCURACY). Note that when a term is less
ACCURACY, the value of n is set equal to 999 (a number higher than 100) and therefore
while loop terminates. The results are printed outside the while loop.

NESTING OF IF...ELSE STATEMENTS

When a series of decisions are involved, we may have to use more than one if...
statement in nested form as shown below:
The logic of execution is illustrated in Fig. 5.7, If the condition- 1 is false, the statement-3.
be executed; otherwise it continues to perform the second test. If the condition-2 is

I
!

statement-1 will be evaluated: othe

—— Pecision Making and Branthing — — {123

=W (tesi condition-1)
+— if (lest condition-2);

|
| | else
; -

{ " staternent -2-

! statement -1; ——

|
|

| |

!]
. |
stalement -x' - T i 2 N

wvlse
[|

' statement -3; — —I

rwise the statement-2 will be evaluated and then the

control is transferred to the statement-x.

e Y
iy

-r..-\:%_. .

Flg.5? Flnwdmrtarnemd if...else statements ’

| %
| S Proprkihring in Al £
12‘ I 1Y ® 1 et F A i : _-i*
A commercial bank has introduced an incentive policy of giving bonus to all its dep it
holders. The policy is as follows: A bonus of 2 per cent of the balance held on 31st Decemba i3
is given to every one, irrespective of their balance, and 5 per cent is given to female accounf.
holders if their balance is more than Rs. 5000, This logic can be coded as follows: o
if (sex is female) B
(
if (balance > 5000) :
bonus = 0.05 * balance;

else)
hy bonus = 0.02 * balance;

!

)/ else
bonus = 0.02 * ba)ance; i b
; :

balance = balance + bonus;

o

LE R RN BN XN]
4

When nesting, care should be exercised to match every if with an else. Consider th
following alternative to the above program (which looks right at the first sight): :

if (sex is female)
if (balance > 5000)
bonus = 0.05 * balance;
else

bonus = 0.02 * balance; :
balance = balance + bonus; 4

There is an ambiguity as to over which if the else belongs to. In C, an else is linked to thed
closest non-terminated if. Therefore, the else is associated with the inner if and there is ni
else option for the outer if. This means that the computer is trying to execute the statem el

balance = balance + bonus:

without really :alcuﬂ;ﬁng the bonus for the male account holders.
Consider another alternative, which also looks correct:

if (sex is female)

(
if (balance > 5000)
bonus = 0.05 * balance;

}

else
bonus = 0.02 * balance;
balance = balance + bonus;

In this case, else is associated with the outer if and therefore bonus is caleulated for th
male account holders, However, bonus for the female account holders, whose balance is equ
to or less than 5000 is not calculated because of the missing else option for the inner if.

.'L P d v R ST Pt |
. — Puchipn e {125

"' Ew 5.4' The program in Fig. 5.8 selects and prints the largest of the three numbers
: using nested If....else statements,

Program
main()

(
float A, B, C;

printf(“Enter three values\n");
scanf("Sf &f 41", 8A, 8B, AC);

printf(*\nLargest value is *);
if (A>B)
{

if (A>C)
printf(*%f\n*, A);
else
printf(*%f\n*, C);

else
{ i
if (C>B)
printf("%f\n®", C);
else
printf(*%f\n®, B);

)
Output
Enter three values
23445 67379 88843

Largest value is 88843.000000

One of the classic problems art using nested if....else state- |
ments is the dangling else. This occurs when a matching else is not available for an
if. The answer to this problem is very simple. Always match an else to the most
recent unmatched if in the current block. In some cases, it is possible that the false |
condition is not required. In such situations, else statement may be omitted
“else is always paired with the most recent unpaired if*

-'?:-_. R _; 3 [} iy B

126

|5.6] THE ELSE IF LADDER

There is another way of putting ifs together when multipath decisions are involved; §

multipath decision is a chain of ifs in which the statement associated with each else is an §
It takes the following general form: '

if (condition 1)
statement-1;

else if (condition 2)
statement-2; -

else if (Jcondition 3) '
f;tatement-B; -

else if (condition n)
statement-n;

else
default-statement s:o—no

statement-x

This construct is known as the else if laddér. The conditions are evaluated from the
(of the ladder), downwards. As soon as a true condition is found, the statement associal
with 1t is executed and the control is transferred to the statement-x (skipping the rest of
ladder). When all the n conditions become false, then the final else containing the defajils
statement will be executed. Fig. 5.9 shows the logic of execution of else if ladder stateme

Let us consider an example of grading the students in an academic institution.{
grading is done according to the following rules:

Average marks Grade
80 to 100 Honours
60 to 79 First Division
-50 to 59 Second Division
40 to 49 Third Division
0 to 39 Fail

This grading can be done using the else if ladder as follows:

if (marks > 79)
grade = "Honours"®;
else if (marks > 59)
grade = "First Division";
else 1f (marks > 49)
grade = "Second Division*;
else if (marks > 39)
grade = "Third Division";
else)

{

|
1127

grade = “Fail";
printf ("%s\n", grade);

Consider another example given below:

if (code == })
colour = "RED":
else if (code == 2)
colour = “GREEN";
else if (code == 3)
colour = "WHITE":
else
colour = *YELLOW®;

if (code 1= 1)

if (code != 2)
if (code != 3) : : , =
colour = "YELLOW™; s
else
colour = "WHITE";
else
colour = "GREEN";
else .
colour = "RED"; -

0 _ bin 4 i E
In such situations, the choice is left to the programmer. However, in order to choose an i
structure that is both ive and efficient, it is important that the programmer is full
aware of the various fo of an if statement and the rules governing their nesting.

5| An electric power cﬂsirhuﬂcan company charges its domestic consul
asfollows. . ‘

Comumpﬁan Un#s Rum ﬂf 'Crk:fgs

0-200 Rs. 0.50 per unit
201 - 400 Rs. 100 plus Rs. 0.65 per unit excess of 200
401 - 600 Rs. 230 plus Rs. 0.80 per unit excess of 400
601 and above Rs. 390 plus Rs. 1.00 per unit excess of 600

The program in Fig. 5.10 reads the customer number and power consumed and prif
the omount to be poid by the customer.

Program
main()
(
int units, custnum;
float charges;
printf("Enter CUSTOMER NO. and UNITS consumed\n®);
scanf("%d %d", &custnum, Bunits);
if (units <= 200)
charges = 0.5 * units;
else 1f (units <= 400)
charges = 100 + 0.65 * (units - 200);
else if (units <= 600)
charges = 230 + 0.8 * (units - 400);
else o
charges = 390 + (units - 600);
printf(*\n\nCustomer No: %d: Chnrges = %.2f\n",
custnum, charges);

el TR

|
OQutput
Enter CUSTOMER NO. and UNITS cunsuned 101 150

_— — Decision Making and Branching — 129

1 Customer No:101 Charges = 75.00
= Enter CUSTOMER NO. and UNITS consumed 202 2275
| Customer No:202 Charges = 116.2%

Enter CUSTOMER NO. and UNITS consumed 303 375
| Customer No:303 Charges = 213.75
| Enter CUSTOMER NO. and UNITS consumed 404 520
Customer No:404 Charges = 326.00

Enter CUSTOMER NO. and UNITS consumed 505 §2%
A Customer No:505 Charges = 415.00
. ————— e ET—— e .

Fig. 5.10 lllustration of else..if lodder

L
Rules for Indentation
When using control structures, a statement often controls many other statements
that follow it. In such situations it is a good practice 1o use indentation to show that
the indented statements are dependent on the preceding controlling statement, |
Some guidelines that could be followed while using indentation are listed below:
™ d) I
. Indent statements that are dependent on the previous statements; provide ;
F at least three spaces of indentation.
= . Align vertically else clause with their matching if clause
- |
T ! J Use braces on separate lines to identify a block of statements.
. Indent the statements in the block by at least three spaces to the right of the
fi Draces.
. Align the opening and closing braces
e . Use appropriate comments to signify the beginning and end of blocks
1 . Indent the nested statements as per the above rules
. Code only one clause or statement on each line
- _J
e —— -...._J

57] THE SWITCH STATEMENT

WE‘ hm't- S0

nﬁll‘m[-

that when one of the many alternatives is to be selected, we can use an if
At to control the selection. However, the complexity of such a Program increases

Tamatically when the number of alternatives increases. The program becomes difficult to
and follow. At times, it may confuse even the person who designed it. Fortunately, C
45 a built-in multiway decision statement known as a switch, The switch statement tests

read

1:m}

' ’
the value of a given variable (or expression) against a list of case values and when a match -
is found, a block of statements associated with that case is executed. The general form of the
switch statement is as shown below:

switeh (expression)
{
case value-1:
block-1
i break;
‘case value-2:
?’ block-2
J break;

default:

defatlt-block ' '
break;

}
statement-x;

The expression is an integer expression or characters. Value-1, value-2 are constants
constant expressions (evaluable to an integral constant) and are known as case labels. Eag
of these values should be unique within a switch statement. block-1, block-2 ...
statement lists and may contain zero or more statements, There is no need to put bractss
around these blocks. Note that case labels end with a colon (2).
When the switch is executed, the value of the expression is successfully compared agaif
the values value-1, value-2,.... If a case is found whose value matches with the value of tf
expression, then the block of statements that follows the case are executed.
The break statement at the end of each block signals the end of a particular case &
causes an exit from the switch statement, transferring the control to the statemen
following the switch.
The default is an optional case. When present, it will be executed if the value of §
expression does not match with any of the case values. If not present, no action takes pla¢
all matches fail and the control goes to the statement-x. (ANSI C permits the use of as m4
as 267 case labels). 3
The selection process of switch statement is illustrated in the flow chart shown
Fig. 5.11.

Te—E——

—— e —_— Duisinnl"hl:inglmlhn:hlnl —_— }131'

(no match) defaull default
block

Fig. 5,11 Sdectmnpmﬂufdruwﬂ:hnm

The switch statement can be used to grade the students as discussed in the last section.
This is illustrated below:

—

index = marks/10
switch (index)
{

case 10:

case 9;

case 8:
grade = “"Honours":
break;

case 7:

case 6:
grade = “First Division*:
break;

case 5:
grade = “"Second Division";
break;

case 4:
grade = "Third Division";
break;

default:
grade = "Fajl";
break:

}
printf(*is\n", grade);

132}

Note that we have used a conversion statement
index = marks / 10;
where, index is defined as an integer. The variable index takes the following integer valug$|
Marks Index
100 10
90 - 99
80 - 89
0-79
60 - 69
60 - 59
40, 49
i Al I

s

Iy 4 A b L I'-—'..'J' Al et B g
g o ANSIC
iming n ANSI.C.

Pk A gl R

* e Ondn =300 W

o i s 0 .

This segment of the program illustrates two important features. First, it uses empty c

The first three cases will execute the same statements
grade = "Honours";

> iafhur it break;
Same 18 the case mth case 7 um‘i case E Second, defnult. cundjtmn is uued for all uthﬂr v
where marks is less than 40,

The switch statement is often used fnr menu selection. For example:

printf(" TRAVEL GUIDE\n\n");
printf(* A Air Timings\n");
printf(" T Train Timings\n");
printf(" B Bus Service\n");
printf(" X To skip\n");
printf("\n Enter your choice\n");

character = getchar();
switch (character)

{
case 'A' :
air-display();
break;
case 'B' :
bus-display();
break;
case 'T' :
train-display();
break;
default :

printf(" No choice\n");
}

— . ——

— i — —

- Decision i‘hﬁln;mdhnr_hinl — o _I133

a switch may be part of a case state-

It is possible to nest the switch statements. That is,
} ment. ANSI C permits 15 levels of nesting.

Rules for switch statement

. The switch expression must be an integral type,

* Case labels must be constants or constant expressions.

Case labels must be unique. No two labels can have the same value.

. Case labels must end with semicolon,

. The break statement transfers the control out of the switch statement.

. The break statement is optional.
belong to the same statements,

. The default label is optional. If present, it will be executed when the ex-
pression does not find a matching case label,

That is, two or more case labels may

. There can be at most one default label.
. The default

may be placed anywhere but usually placed at the end.
It is permitted to nest switch statements.

98 THE . OPERATOR

fThe C language has an unusual operator,
E, * “mbination of ? and :, and takes th
€ conditional operator. The general fo

useful for making two-way decisions. This operator
ree operands. This operator is popularly known as
rm of use of the conditional operator is as follows:

conditional expression ? expressionl : expression2

£"¢ conditionqg] expression is evaluated first. If the result is nonzero, expressionl] is

& Uated and is returned as the value of the conditional expression. Otherwise, expression?
b uated and its valye 15 returned. For example, the segment
if (x <0)
flag = 0;
else
' flag = 1;
:ibe'"iﬂhnlﬂs
flag = (x <0)?20:1

the evaluation of the following function:
¥=15x+3forx<?
Y=2x+5forx>2

{ 2,
o e et

X
by gl

- |

This can be evaluated using the, conditional operator as follows: d
y:[::z}?{z*:+5}:{1.5-;+3); %

The conditional operator may be nested for evaluating more complex assignment decisiong

For example, consider the weekly salary of a salesgirl who is selling some domestic product

If x iz the number of products sold in a week, her weekly salary is given by i

4x +100 forx <40 :
salanr= 300 for x =40 . h
4.5x + 150 for x > 40 -

This complex equation can be written as
salary = (x 1=180) 7 ((x < 40) 7 (4*x+100) : (4.5*x+#150)) : 300;
The same can be evaluated using if...else statements as follows:
U k<= a0)
4 ooif (x < 40) . 5 s
salary = 4 * x+100;
else
salary = 300;
else Jage e
. salary = 4.5 * x+150;

When the conditional operator is used, the code becomes more concise and perhaps, =.
efficient. However, the readability is poor. It is better to use if statéments when more thag
single nesting of conditional operator is required. ; |

An employee can apply for a loan at the beginning of every six mof
but he will be sanctioned the amount according o the following Ck

pany rules: '
Rule 1: An employee cannot enjoy more than two loans at any' poif
fime. |
Rule 2 : Maximum permissible total loan is limited and depends Upong '1
category of the employee. ' : B
A program to'process loan applications and to sanction loans is give!

Fig. 5.12. :

Program
fdefine MAXLOAN 50000 o
main() . r
{
long int loanl, loan2, loan3, sancloan, sum23;
printf("Enter the values of previous two loans:\n");
scanf(" %1d %1d", &loanl, &loan2);
printf(*\nEnter the value of new loan:\n"); -
scanf(" %1d*, &loan3);
sum23 = loan2 + loan3;
sancloan = (loan1>0)? 0 : ((sum23>MAXLOAN)?

| 135

b s

i MAXLOAN - loan2 : loan3);
i printf("\n\n*);
! printf(“Previous loans pending:\n%ld %1d\n",loanl,10an2);
z printf("Loan requested = %1d\n", loan3);
3 printf(“Loan sanctioned = %1d\n*, sancloan);
E }
b Output
L Enter the values of previous two loans:
F 0 20000
Enter the value of new loan:
45000
Previous loans pending:
0 20000

Loan requested = 45000

Loan sanctioned = 30000

Enter the values of previous two loans:
1000 .15000

Enter the value of new loan:

25000

Previous loans pending:

1000 15000

Loan requested = 25000

Loan sanctioned = 0

FRBIDW oy FiTR-

The program uses the following variables:
loan3 - present loan amount requested
loan2 . previous loan amount pending
loanl - previous to previous loan pending
Sum23 - sum of loan2 and loan3
sancloan - loan sanctioned
rules for sanctioning new loan are:
1. loan1 should be zero.
2. loan2 + loan3 should not be more than MAXLOAN,
Note the use of long int type to declare variables,

E. = '..'.' A 1.
Nriting M
BT o, SRl .

Complex multiway selection statements require special attention. The readers
should be able to understand the logic easily. Given below are some guidelines
that would help improve readability and facilitate maintenance.

* Avoid compound negative statements. Use positive statements wherever
possible.

R T e S L et 1
e .:.",;,_—-'__-;'.-‘:L‘_';f_-'-l_"._-.\f$_;|‘:'1 “un M

L 2y M=ot e

@79 « Keep logical expressions simple. We can achieve this using nested if state
' - ments, if necessary (KISS - Keep It Simple and Short).

e Try to code the normal/anticipated condition first.

55t probable condition first. This will eliminate unnecessaiy tests

-,-_-._ thus improving the efficiency of the program. ook ._
| ¢ The choice between the nested if and switch statements is a matter of indi-
vidual's preference. A good rule of thumb is to use the switch when alter-

native paths are three to ten.

| « Use proper irdéri:tatiuns (See Rules for Indentation). -

i ¢ Have the habit ?\f using default clause in switch statements.
| Group the case’labels that have"éii'niiar attions.” ”

L

I h =l |

6] THE GOTO STATEMENT . .

So far we have discussed ways of controlling the flow of execution based on certain specifig
conditions. Like many other languages, € supporis the goto statement to bran
unconditionally from one point to another in the program. Although it may not be essentl
to use the goto statement in a highly structured language like C, there may be occasidl
when the use of goto might be desirable, . , 3

The goto requires a label in order to identify the place where the branch is to be made. 8
label is any valid variable name, and must be followed by a colon. The label is placey
immediately before the statement where the control is to be transférred. The general for
of goto and label statements are shown below: | ' =2

. Fowardjump .. o G .. Backwardjomp

The label: can be anywhere in the program either before or after the goto label; statemé
During running of a program when a statement like . S il 4
is met, the flow of control will jump to the statement immediately following the label begf
This happens unconditionally. v Ll : t ot o
Nntethntagotobrmksthannrmalaaquanﬁalmtiunnfthapmgmm.Ifthnh _
before the statement goto label; a loop will be formed and some statements will be execut®
repeatedly. Such a jump is known as a backward jump. On the other hand, if the label:

TUTTLE SRR

Y Decision Making and Branching 113?

placed after the goto label; some statements will be skipped and the jump is known as a
forward jump.

A goto is often used at the end of a program to direct the control to go to the input statement,
to read further data. Consider the following example:

—— e

main()
{

- — = e e TR

double x, y;
read:
scanf ("%f", &x);
if (x < 0) goto read;
y = sqrt(x);
printf("%f $f\n", x, y);
goto read;
}

This program is written to evaluate the square root of a series of numbers read from the
terminal. The program uses two goto statements, one at the end, after printing the results
to transfer the control back to the input statement and the other to skip any further
computation when the number is negative.

Due to the unconditional goto statement at the end, the control is always transferred
back to the input statement. In fact, this program puts the computer in a permanent loop
known as an infinite loop. The computer goes round and round until we take some special

steps to terminate the loop. Such infinite loops should be avoided. Example 5.7 illustrates
how such infinite loops can be eliminated.

‘Exomple 5.{] Program presented in Fig. 5.13 illustrates the use of the golo statement.
The progrom evaluates the square root for five numbers. The variable
count keeps the count of numbers read. When count is less than or
equal to 5. golo read. directs the control fo the label read: otherwise,
the program prints a message and stops.

Program
finclude <math.h>
main()

{

e ——— B E p— o — o —

double x, y;

int count;

count =];

printf("Enter FIVE real values in a LINE \n");
read:

scanf("%1f", &x);

printf(*\n*):

if (x < 0)

printf(“"value - %d 1s negative\n",count);

|
13&l

| else

y = sqrt(x); . 1
printf("$1f\t %1f\n", X, ¥);: T e A
I 1

- count = count + 1;
if (count <= §)
goto read;
printf("\nEnd of computation®);
} i’
i # by e)

Output H ' o
Enter #FIVE real values in a LINE
En.?z,:ﬂ -36 75 11.25
50.750000 7.123903

' 40.000000 - - - 6.324555
Value -3 is negative
-y 18y 000000 .660254

_ 11.250000 " 3,354102

End of cmutafiun

M AT J i

Anutharmufthagotnatatamentmtu transfarthemnhnloutnfaloop{nrneated
when certain peculiar conditions are encountered. Example:

while (=-=-)
{
for (--==)
{

if (----)goto end_of program; |

) Jumping
——— out of
- loops
) x b 3

end_of_program:

Wauhuuldtry to nvmd using goto as far as possible. Butthnuianothmgqung. :hru
to enhance the readability of the program or to improve the execution speed,

| 139

Be aware of dangling else statements.

Be aware of any side effects in the control expression such as iflx++).
Use braces to encapsulate the statements in if and else clauses of an if ...
else statement.

Check the use of =operator in place of the equal operator = =,

Do not give any spaces between the two symbols of relational operators =
=, !-, >= l.nl.‘l <=,

Writing !=, >= and <= operators like =!, => and =< is an error.

Remember to use two ampersands (&&) and two bars (||) for logical
operators. Use of single operators will result in logical errors.

Do not forget to place parentheses for the if expression.

It is an error to place a semicolon after the if expression.

Do not use the equal operator to compare two floating-point values. They
are seldom exactly equal.

Do not forget to use a break statement when the cases in a switch
statement are exclusive.

Although it is optional, it is a good programming practice to use the default
clause in a switch statement.

It is an error to use a variable as the value in a case label of a switch
statement. (Only integral constants are allowed.)

Do not use the same constant in two case labels in a switch statement.
Avoid using operands that have side effects in a logical binary expression
such as (x—-&&++y). The second operand may not be evaluated at all.

3 Try to use simple logical expressions.

B BB D B B BBRR BB BB BMM

——

L. Range of Numbers

m: A survey of the computer market shows that personal computers are sold at
mi costs by the vendors. The following is the list of costs (in hundreds) quoted by some
ors:

35.00, 40.50, 25.00, 31.25, 68.15,
47.00, 26.65, 29.00 53.45, 62.50

ine the average cost and the range of values.

P""M!mtlnalytit: Range is one of the measures of dispersion used in statistical analysis of
'“ﬁﬂ!nfva]uu.Themgnnfmymiﬂi!thadiﬂmm*betwm the highest and the
lowest values in the series. That is

‘ Range = highest value - lowest value
Itis therefore necessary to find the highest and the lowest values in the series.

0

. :;

"OF" £V : -

Program: A program to determine the range of values and the average cost of a pers
computer in the market is given in Fig. 5.14.

Program :

main() 3

o dnt. counts - - o

float value, high, Tow, sum, average, range; 3

MU Tnsum s 0y - - : '

TS T £ount !-l.'l; }

N

¢ printf("Enter nuﬁhers in a line ; ..
Cor s Lo cinput a NEGATIVE number to end\n®); .
V' = t:,i'-."; PP el ; TR
Voo coscanf ("5 -bvalue); . o
v (value <10) goto output; .,
20 ncount-= count + 1: €

--.-_ o Mo (count == 1)

high = Jow = value; e
else if (value > high) . ..
high = value; . . =
else if (value < Tow)- .-,
low = value: -
L sum = sum + value;
rgoto input;
Output:
: average = sum/count;
P tolrange = high.~ low;
printf(*"\n\n*);

Printf(*Total values : %d\n", count): 3

printf(*Highest-value: %f\nLowest-value : 5f\n*,
high, Tow);
printf(“Range : %f\nAverage : %f\n",
range, average);
J

Output

‘Enter numbers in a line : input a NEGATIVE number to end

35 40.50 25 31.25 68.15 47 26.65 29 53.45 62.50 -1

Total values : 10
Highest-value : 68.150002

L

Lowest-value : 25.000000 " b il
Range . : 43.150002 _ ;
Average : 41.849998 :

T
LY.

— - = Decision Making and Branching —— { 141

When the value is read the first time. it is assigned Lo two buckets, high and low, through
the statement
high = low = value;

For subsequent values, the value read is compared with high; if it is larger, the value is
assigned to high. Otherwise, the value is compared with low; if it is smaller, the value is
assigned to low. Note that at a given point, the buckets high and low hold the highest and the
lowest values read so far.

The values are read in an input loop created by the goto input; statement. The control is
transferred out of the loop by inputting a negative number. This is caused by the statement

if (value < 0) goto output;
Note that this program can be written without using goto statements. Try.

2. Pay-Bill Calculations

Problem: A manufacturing company has classified its executives into four levels for the
benefit of certain perks. The levels and corresponding perks are shown below:

F Perks
Level

s Conveyance Entertainment
aflowance allowagnce
1 1000 500
2 750 200
3 500 100
i 250 :

An executive's gross salary includes basic pay, house rent allowance at 26% of basic pay and
other perks. Income tax is withheld from the salary on a percentage basis as follows:

;_ Gross salary Tax rate
Gross <= 2000 Mo tax deduction
2000 < Ciross <= 40040 ot
2000 < Gross <= SO00 5%
Gross = 5000 Ly

———

Write a program that will read an executive's Job number, level number, and basic pay and
then compute the net salary after withholding income tax.
lem analysis:
Gross salary = basic pay + house rent allowance + perks
Net salary = Gross salary - income tax.
tomputation of perks depends on the level, while the income tax depends on the gross
. The major steps are:
1. Read data.
2. Decide level number and calculate perks.
3. Calculate gross salary.
4. Calculate income tax.

= K
e
{.‘

o

142}

5. Compute net salary. y,
6. Print the results.

Program: A program and the results of the test data are given in Fig. 5.15. Note that the
last “Intement should be an executable statement. That is, the label stop: cannot be the lagt?

sl

Program
#define CA1 1000
#define CA2 750
fdefine CA3 500 -
#define CA4 250 oW
fdefine EAl 500 : 9
#define EAZ 200 etinabisiate ¥i; 1.8
fdefine EA3 100 . &
#define EAMM O ' ~0 s et iy e
main{) "~ - ¢ o
{ . _ i
int level, jobnumber;
float gross,
basic,
house_rent,
perks,
net,
incometax;
input:
printf("\nEnter level, job number, and basic pay\n");
printf("Enter 0 (zero) for level to END\n\n®); .
scanf("%d", &level);
if (level == 0) goto stop; E
scanf("%d %f", &jobnumber, &basic); 3
switch (level) b
{
case 1:
perks = CAl + EAl;
break;
case 2:
perks = CAZ + EAZ;
break;
case 3:
perks = CA3 + EA3;
break;
case 4:
perks = CA4 + EA4;
break;
default:
printf("Error in level code\n");

Bl e

}

goto stop;
)
house_rent = 0,25 * basic;
gross = basic + house_rent + perks;
if (gross <= 2000)
incometax = 0;
else i1f (gross <= 4000)
incometax = 0.03 * gross;
else if (gross <= 5000)
incometax = 0.05 * gross;
else
incometax = 0.08 * gross;
net = gross - incometax;

printf(*sd %d %.2f\n", level, jobnumber, nei];l

goto input;
stop: printf("\n\nEND OF THE PROGRAM") ;

Output
Enter level, job number, and basic pay
Enter 0 (zero) for level to END
1 1111 4000
1 1111 5980.00

Enter level, job number, and basic pay
Enter 0 (zero) for level to END

2 2222 3000

2 2222 4465.00

Enter level, job number, and basic pay
Enter 0 (zero) for level to END

3 3333 2000

3 3333 3007.00

Enter level, job number, and basic pay
Enter 0 (zero) for level to END

4 4444 1000

4 4444 1500.00

Enter level, job number, and basic pay
Enter 0 (zero) for level to END

0

END OF THE PROGRAM

144]

@eﬁaw Questions

5.1 State whether the following are true or false: e
(a) When if statements are nested, the last else gets associated with the nearesgif
without an else. .
(b) One if can have more than one else clause.
(¢) A switch statement can always be replaced by a series of if..else statements
(d) A switch expression can be of any type. '
(e) A program stops its execution when a break statement is encountered.
(f Eanhexpressmnmf.ha else if must test the same variable.
(g) Any expressiorycin be used for the if expression.
(h) Each case labe¢l can have only one statement.
(i) The default case is requiréd in the switch statement.
(j) The predicate I (x >= 10)}(y = = 5)) is equivalent to (x < 10) && (y !=5).
5.2 Fill in the hlnnka in the following statements.

(a) The operator is true only when both the operands are true. 3

(b) Multiway selection can be accomplished using an else if statement o
statement, .

(¢) The __ statement whan em:ut.ed in a switeh statement causes imme;

exit from the structure.
(d) The ternary conditional expression using the operator ?: could be easﬂy
using statement.
(e) The expression ! (x ! = y) can be replaced by the expression
5.3 Find errors, if any, in each of the following segments:
(@) if (x +y=2z8&y>0)
printf(" *);
(b) if (code > 1);
a=bh+c
else
a=0
(¢) if (p<0) || (qg<0)
printf (" sign is negative");
5.4 The following is a segment of a program:

y=y-14
printf(* %d %d*, x, y);
What will be the values of x and y if n assumes a value of (a) 1 and (b) 0.
5.5 Rewrite each of the following without using compound relations:
(a) if (grade <= 59 &4 grade >= 50)
second = second + 1;

31

(b) if (number > 100 || number < ()
printf(" Out of range"):
else
sum = sum + number:
(c) if ((M1 > 60 &8 M2 > 60) || T > 200)
\ printf(* Admitted\n"):
else

printf(" Not admitted\n®):

5.6 Assuming x = 10, state whether the following logical expressions are true or false.
(@) x==10 && x> 10 && !x b) x==10 || x> 10 && ! x
€) x==10&&x>10 || Ix d x==10 || x>10 || x

5.7 Find errors, if any, in the following switch related statements, Assume that the vari-
ables x and y are of int type and x = 1 and y = 2
(a) switch (y);
(b) case 10;
(c) switch (x + y)
(d) switch (x) {case 2: y = x + y; break);

58 Simplify the following compound logical expressions
(a) Ax <=10) (b) Xx==10) ||!((y==5) || (z<0))
(e) Mix+y==2)&& Yz > 5) (d) X (x<=5)&& (y==10)& & (z<5))

5.9 Assuming thatx=5,y=0,andz=1 initially, what will be their values after executing
the following code segments?

(a) if (x 8% y)
x = 10;
else
y = 10;
(b) if (x || y || 2)
y = 10;
else
z = 0;
iy () if (x)
5 if (y)
o zZ = 10;
4 else
i z =0;
¥) if (x==0]] x&ty)
if (ly) :
o 2 =0;
é else
y=1;
i | 8o Assuming thatx =2, y=1andz = 0 initially, what will be their values after executing
i the following code segments?
(a) switch (x)

146 |— R ERGTR R ANSEG -
{
case 2:
x=1;
y=x+1;
case |:
x=1(;
break;
default:
x=1;
y =0, ,
} /
!
(b) switch (y) -
!
case 0
x=0;
y=0;
case 2:
x=2:
z=12,
default:
x=1;
y=2,

}
5.11 Find the error, if any, in the following statements:
(a) if (x > = 10) then
printf ("\n") ;
(b) if x > = 10
printf ("0K") ;
(c) if (x = 10)
printf ("Good") ;
(d) 1f (x = < 10)
printf ("Welcome") ;
5.12 What is the output of the following program?

main ()

{
intm=5
if (m < 3) printf("%d" , m#l) ;
else if(m < 5) printf("%d*, m+2);
else 1f(m < 7) printf("%d*, m+3);
else printf("%d*, m+d);

F " Dechion Making ad Branching J1e

5.13 What is the output of the following program?

main ()
{
intm=1;
Cif (me=1)
{
printf (" Delhi *) ;
if (m==2)
printf(“Chennai®) ;
else
printf(*Bangalore®) ;
)
else;

printf(® END");
)
5.14 What is the output of the following program?

main()
{
int m;
for (m = 1; m<5; m++)
printf(%d\n*, (m%2) 7 m : m*2);
}
5.15 What is the output of the following program?

main()

{
intm, n, p;
for (m=0; m< 3; mes)
for (n = 0; n<3; n++)
for (p=0; p<3;; ptt)
if(m+n+p==2)
goto print;

print :
printf("%d, %d, %", m, n, p);
|
5.16 What will be the value of x when the following segment is executed?
int x = 10, y = 15;
x = (x<y)? (y#x) : (y-x) ;
517 What will be the output when the following segment is executed?
int x = 0;
If (x >= 0)
if (x>0)

148 |-

printf("Number is positive®);
else
printf("Number is negative");
1A What will be the output when the following segment is executed?
char ch = 'a' ;
switch (ch)
{
case 'a' :
printf(*A*) ;
case'b’: |
Printf ("B") |

default : .
printf(* C ']f,;
)

5.19 What will be the output of the following segment when executed?
int x = 10, y = 20;
if((x<y) || (x+5) > 10)
printf("%d", x);
else
printf("%d", y);
5.20 What will be output of the following segment when executed?
int a = 10, b = 5;
if (a >b)
{

Fuglhy

if(b > 5)
printf(“%d", b);

else
printf("%d*, a);

Qrugrnmmlng Exercises

5.1 Write a program to determine whether a given number is ‘odd’ or ‘even’ and prinlr:'_.
message :
NUMBER IS EVEN

or
NUMBER IS ODD
(a) without using else option, and (b) with else option.
5.2 Write a program to find the number of and sum of all integers greater than IN e
less than 200 that are divisible by 7.
5.3 A set of two linear equations with two unknowns x1 and x2 is given below:

- ___ Decision Making and Branching }149
1 8 ax; +bx, =m

cx; +dx,=n
The set has a unique solution

xl .
ad - cb

na - mc
ad - cb

provided the denominator ad cb is not equal to zero.
Write a program that will read the values of constants a, b, ¢, d, m, and n and compute
the values of x, and x,. An appropriate message should be printed if ad - cb = 0.
5.4 Given a list of marks ranging from 0 to 100, write a program to compute and print the
number of students:
(a) who have obtained more than 80 marks,
(b) who have obtained more than 60 marks,
(¢) who have obtained more than 40 marks,
(d) who have obtained 40 or less marks,
(e) in the range 81 to 100,
(D in the range 61 to 80,
(g) in the range 41 to 60, and
(h) in the range 0 to 40.
The program should use a minimum number of if statements.
55 Admission to a professional course is subject to the following conditions:
(a) Marks in Mathematics >= 60
(b) Marks in Physics >= 50
(c) Marks in Chemistry >= 40
(d) Total in all three subjects >= 200
or
Total in Mathematics and Physics >= 150
Given the marks in the three subjects, write a program to process the applications to
list the eligible candidates.
56 Write a program to print a two-dimensional Square Root Table as shown below, to
provide the square root of any number from 0 to 9.9. For example, the value x will give
the square root of 3.2 and y the square root of 3.9,

Square Root Table
Number 0.0 0.1 R) wEaoss 09
0.0
1.0
2.0
30 X ¥
9.0

150}

5.7 Shown below is a Floyd's triangle.
1

23

456
78910
1 i 13

. —
(a) Writenpmgmmhpﬁntthintrlmﬂn E
{b} mewm&mm&ummamm-wa.

0101
10101

,E‘Bhdnthuhnmhuumuumdthnfuﬂwingmﬂﬂmnﬂm |
itmnl

0100

; 8L -

101 =200 % 1.5%

201 - 300 7.5% 10.0% -

Above 300 10.0% 15.0%
Wntanpmgrmu:inglwitchnudﬂmtmtntummmpuuthemtnmmttnh
by a customer.

5.9 Write a program that will read the value of x and evaluate the following function
1 forx<0

- y=4{ 0 forx=0
=1 forx<0

using

(a) nested if statements,
(b) else if statements, nnd
(e¢) conditional operator ?

5.10 Write a prugram to l:nmpute the real roots of a quadratic equation
ax’+bx+c=0

The roots are given by the equations

b’ -4ac

Decision Making and Branching | 151

|
b J_,“b 4 ac
2a
The program should request for the values of the constants a, b and ¢ and print the
values of x; and x,. Use the following rules:
(a) No solution, if both a and b are zero
(b) There is only one root, if a = 0 (x = —¢/b)
(c) There are no real roots, if b* - 4 ac is negative
(d) Otherwise, there are two real roots
Test your program with appropriate data so that all logical paths are working as per
your design. Incorporate appropriate output messages.
§.11 Write a program to read three integer values from the keyboard and displays the
output stating that they are the sides of right-angled triangle.
2 An electricity board charges the following rates for the use of electricity:
For the first 200 units: 80 P per unit
For the next 100 units: 90 P per unit
Beyond 300 units: Rs 1.00 per unit
All users are charged a minimum of Rs. 100 as meter charge. If the total amount is
more than Rs. 400, then an additional surcharge of 15% of total amount is charged.
Write a program to read the names of users and number of units consumed and print
" out the charges with names.
.13 Write a program to compute and display the sum of all integers that are divisible by 6
" but not divisible by 4 and lie between 0 and 100. The program should also count and
display the number of such values.
5.14 Write an interactive program that could read a positive integer number and decide
whether the number is a prime number and display the output accordingly.
Modify the program to count all the prime numbers that lie between 100 and 200,
NOTE: A prime number is a positive integer that is divisible only by 1 or by itself.
515 Write a program to read a double-type value x that represents angle in radians and a
character-type variable T that represents the type of trigonometric function and dis-
play the value of
(a) sin(x), ifsorS is assigned to T,
(b) cos (x), if ¢ or C is assigned to T, and
(¢) tan (x), if t or T is assigned to T

using (i) if......else statement and (ii) switch statement.

—ﬁ;‘-}- Ll
=5 e - 1'

=
ks

-
e

5 '."-'-.!!")ﬁ' éﬁ'ﬁ"&

Xy =

Decision Makmg
and Logpmg o

iH‘rnonuchoN S hne D}

We huva seen in the prmrmu; chuptar that it is pnmblu to exm:uta a megmunt nf o progiin
repeatedly by introducing a counter and later testing it using the if statement, W 1 !
method is quite satisfactory, for all practical purposes, we need to initialize and increm i
counter and test its value at an appropriate place in the program for the cumplmmtt
loop. For example, suppose we want to caleulate the sum of squares of all 1ntegarn :
1 and 10, we can write a prug:mm using the if statement as follows;

sum . I];

B S O

—= Joop:

sum = sum + n*n;

if (n == 1ﬂ2
goto print;

else

- o O r

n =10,
end of loop

n=ntl;
— """ goto loop;

This program does the following things:
1. Initializes the variable n.
2. Computes the square of n and adds it to sum.
3. Tests the value of n to see whether it is equal to 10 or not. If it is equal to 10, thunﬂh'
program prints the results.

4. Ifn is less than 10, then it is incremented by one and the control goes back to compt¥
the sum again,

T T

ping. {153

The program evaluates the statement
Sum = sum + n*n;

& 10 times. That is, the loop is executed 10 times. This number can be increased or decreased

B easily by modifying the relational expression appropriately in the statement if (n == 10). On

such occasions where the exact number of repetitions are known, there are more convenient

‘methods of looping in C. These looping capabilities enable us to develop concise programs

gcontaining repetitive processes without the use of goto statements,

& Inlooping, a sequence of statements are executed until some conditions for termination of

I the loop are satisfied. A program loop therefore consists of two segments, one known as the
body of the loop and the other known as the controf statement. The control statement tests

certain conditions and then directs the repeated execution of the statements contained in the

body of the loop.

v Depending on the position of the control statement in the loop, a control structure may be

tlassified either as the entry-controlled loop or as the exit-control

| led loop. The flow charts in
¥ig. 6.1 illustrate these structures. In the entry-controlled loop, the control conditions are
fested before the start of the loop execution. If the conditions are not satisfied, then the body

the loop will not be executed. In the case of an exit-controlled loop, the test is performed at

he end of the body of the loop and therefore the body is executed unconditionally for the first

B tme. The entry-controlled and exit-controlled loops are also known as pre-test and post-test
l0ops respectively,

Entry Entry

e
= -
L] [
fﬁ (@) Entry controlled loop
enith! s VAR e SR ER AR .

“' The tost conditions should be carefully stated in order to perform the desired number of
ympi :"Pt‘lecutiuns. It is assumed that the test condition will eventually transfer the control out
loap. In case, due to some reason it does not do so,

the control sets up an infinite loop
the body is executed over and over again,

|
154l

A looping process, in general, would include the following four steps:
1. Setting and initialization of a condition variable,
2. Execution of the statements in the loop. :
3. Test for a specified value of the condition variable for execution of the loop. b
4. Incrementing or updating the condition variable. L
The test may be either to determine whether the loop has been repeated '.'
number of times or to determine whether a particular condition has been met. _ %
The C language provides for three conslructs for perfurmmg loop nperatmm IHE
1. The while statement. AREE &
| By ’I‘hqdomlemr.nmﬁ o i . etes 00 g P - thad
3. Thefor statement. | -sill
Wa shall dmcusa tha' tures and apphcm:m of each of theaa statements in th 3%

Py R 4 i 1 N > .] - T LR E S o -

. sariable and the kind o value assigned to it [d
| 'lesting the cnntrul expressiun ‘the luops may be classifi ed into two general catege
nes
. Counter-controlled loops
2. Sentinel-controlled loops

When we know in advance exactly how many times the loop will be exe
5| we use a counter-controlled loop. We use a control variable known as counter S
| The counter must be initialized, tested and updated properly for the desired loop
operations. The number of times we want to execute the loop may be a constant 0§
a variable that is assigned a value. A counter-controlled loop is sometimes called¥
definite repetition loop. . ;

In a sentinel-controlled loop, a special value called a sentinel value is used to
change the loop control expression from true to false. For example, when reading$
data we may indicate the "end of data" by a special value, like -1 and 999. The§
control variable is called sentinel variable. A sentinel-controlled loop is often calle -_;
indefinite repetition loop because the number of repetitions is not known before
the Ioup begms executlng 3

[6.2] THE WHILE STATEMENT

The simplest of a]l the looping Btrucfures inCis the while statement. We have “4
in many of our aa:rher programs. - The basic fnrmat of the while statement is

4

]

———+———————— Decision Making and Looping —— ——— — | 155

[while (test condition) |
{

‘ body of the loop

| }

e i

& _The while is an entry-controlled loop statement. The test-condition is evaluated and if
*the condition is true, then the body of the loop is executed. After execution of the body, the
test-condition 1s once again evaluated and if it is true, the body is executed once again.
This process of repeated execution of the body continues until the test-condition finally
becomes false and the control is transferred out of the loop. On exit, the program continues
with the statement immediately after the body of the loop.

The body of the loop may have one or more statements. The braces are needed only if the
body contains two or more statements. However, it is a good practice to use braces even if the
body has only one statement.

‘We can rewrite the program loop discussed in Section 6.1 as follows:

[;:;::::;“"_ FSLs ot s "?
sum = 0; ,'
n=1; /* Initialization */
while{n <= 10) /* Testing */ i
{

loop | SUM = sum + n * n;
n = n+l; /* Incrementing */

—») f
printf("sum = %d\n", sum);

|
t & & T EE B = |
| S—

- —— ———— — -—-J—I——_.I

The body of the loop is executed 10 times for n = 1, 2, ..., 10, each time adding the

g "quare of the value of n, which is incremented inside the loop. The test condition may also
written as n < 11; the result would be the same. This is a typical example of counter-

“trolled loops. The variable n is called counter or control variable

¢ Another example of while statement, which uses the keyboard input is shown below:

character = ' ' ;

while (character != 'Y')
character = getchar():

AXXEAAX;

i, First the character is initialized to * *. The while statement then begins by testing

r character is not equal to Y. Since the character was mitialized to * *, the test is
and the loop statement

character = getchar();

1sn|

is executed. Each time a letter i keyed.in, the test is carried out and the loop statemeg
executed until the letter Y is pressed. When Y is pressed, the condition becomes fals
cause character equals Y, and the loop terminates, thus transferring the :nntrul
statement xxxxxxx;. This is a typical example of sentinel-controlled loops. The ch ¢
constant ‘y’ is called sentinel value and the variable character is the condition ve
which often referred to as thn sentmzi variable.

nple 6:1] A pro-gmrn 1:: avc:luate the equation

y=x' ' "
when n lq Q nan—negaﬂua Integer. IsgiveninFig. 6.2 e
Thavanahleyummnl tulaudt.hanmﬂuphadbyx,nnmasumgthew

The, loop control variable unt is initialized outside the loop and incremented ix
loop. When the value of yunt becomes greater than n, the control exists the loop

Fa # LI il

Prngrll
main()
{
int count, n;
float x, y;

printf(*Enter the values of x and n : *);
scanf("%f %d", &x, &n);

y = 1.0;

count = 1; /* Initialisation */
/* LOOP BEGINs */

while (count <= n) /* Testing */
{
® Y=y :
. count+t; | /* Incrementing */
}y \
/* END OF LDUP o |
printf(*\nx = %f; n = %d; x to power n = %f\n",x,n,y);
}
Output
Enter the values of x and n : 2.5 4
x = 2.500000; n = 4; x to power n = 39.062500
Enter the values of x and n : 0.5 4
x = 0.5000003:n # 4; x to power n = 0.062500

—— Decision Making and Looping - -——|15?

' THE DO STATEMENT

The while loop construct that we have discussed in the previous section, makes a test of
condition before the loop is executed. Therefore, the body of the loop may not be executed at
all if the condition is not satisfied at the very first attempt. On some occasions it might be

ry to execute the body of the loop before the test is performed. Such situations can be
' pandled with the help of the do statement. This takes the form:

do

(
body of the loop

]
while (test-condition); :

e

On reaching the do statement, the program proceeds to evaluate the body of the loop first.
At the end of the loop, the test-condition in the while statement is evaluated. If the condition
is true, the program continues to evaluate the body of the loop once again. This process
continues as long as the condition is true. When the condition becomes false, the loop will be
terminated and the control goes to the statement that appears immediately after the while

statement.
Since the test-condition is evaluated at the bottom of the loop, the do...while construct

provides an exit-controlled loop and therefore the body of the loop is always executed at least
once.
A simple example of a do...while loop is:

do
" {
printf (“Input a number\n®});
loop | number = getnum (); .
L while (number > 0);
| Foamvtrmans : L J

This segment of a program reads a number from the keyboard until a zero or a negative
number is keyed in, and assigned to the sentinel variable number.
The test conditions may have compound relations as well. For instance, the statement
while (number > 0 && number < 100);

in the ahove example would cause the loop to be executed as long as the number keyed in lies
between 0 and 100.
Consider another example:

I=1; /* Initializing */

sum = 0;

| AR AN
153|

{
sum = sum + [;
loop 1 = I+2: /* Incrementing */
! . .
while(sum < 40 || 1 < 10); [* Testing */
printf("%d %d\n", I, sum);

& A program tg print the multiplication table from 1x 1to 12x 10 as s

below is given in Fig. 6.3. =

1 (1 ? f' 3 .&n_. i Tﬂ i

2. 4 6 8 '

e e '
4, A 40

'I; T et ¥
iz Falli PP lcs " an e il i lm ; ¥

This program contains two do.... while loops in nested form. The outer loop is controllé
the variable row and executed 12 times. The inner loop is controlled by the variable colu
and is executed 10 times, each time the outer loop is executed. That is, the inner loc
executed a total of 120 times, each time printing a value in the table.

Program: = _
#define COLMAX 10
fdefine ROWMAX 12
main()

int row,column, y;

row = 1;
printf(* ° MULTIPLICATION TABLE \n");
printf(- \n*);
do. /%5 OUTER LOOP BEGINS........ *y
{
column = 1;
do /*.......INNER LOOP BEGINS.......*/
(
_ y = row * column;
o printf("%4d", y);

column = column + 1; :

-

while (column <= COLMAX); /*... INNER LOOP ENDS...*/
printf(*\n");
row = row + 1;

lllll

- S

aamn. SRR o e B o B i D

e J o G ol g, . r 1 g Lk T "
i Y i M - A - k3 et Tl Py PRl e Aol 1

Notice that the printf of the inner loop does not contain any new line character (\n). This
allows the printing of all row values in one line. The empty printf in the outer loop initiates
a new line to print the next row.,

THE FOR STATEMENT

Simple ‘for’ Loops

The for loop is another entry-controlled loop that provides a more concise loop control struc-
ture. The general form of the for loop is

for (initialization ; test-condition ; increment)

{
body of the loop
)

The execution of the for statement is as follows:
1. Initialization of the control variables is done first, using assignment statements such
as i =1 and count = 0. The variables i and count are known as loop-control variables.
2. The value of the control variable is tested using the test-condition. The test-condition
is a relational expression, such as i < 10 that determines when the loop will exit. If the

162}

< T T (1 114 B e \I'I'],
: printf(* 2 to power n n 2 to power -n\n");
f printf('——— e \n");
p=1;
i for (n = 0; n < 21 ; ++n) /* LOOP BEGINS */
i { '
5 if (n == 0)
3 p=1
E]!E B : ; .
sk P Tl i , W, . 2
q -q;l 0/(double)p ; !
prin f("%101d %lﬂd %20.121f\n", p, n. q);
/* LOOP ENDS */
PPN [P e e e e e e =\n");
)
Output
. 2 to power n n 2 to power -n
1 0 1.000000000000
2 1 0.500000000000
4 2 0.250000000000
8 3 0.125000000000
| 16 4 0.062500000000
32 5 0.031250000000
64 6 0.015625000000
128 7 0.007812500000
256 8 0.003906250000
512 9 0.001953125000
1024 10 0.000976562500
2048 11 0.000488281250
4096 12 0.000244140625
8192 13 0.000122070313
16384 14 0.000061035156
32768 15 0.000030517578
65536 16 0.000015258789
131072 17 0.000007629395
262144 18 0.000003814697
524288 19 0.000001907349

W < i 1048576 20 0.000000953674

Decision Making and Looping — | 163

Note that the initialization section has two parts p = 1 and n = 1 separated by a comma.
Like the initialization section, the increment section may also have more than one part.
' For example, the loop
Im' (n=1, m=50; n<=m; n=n+l, m=m-1)

p = m/n;

printf("%d % 5d\n", n, m, p);

is perfectly valid. The multiple arguments in the increment section are separated by commas,
* The third feature is that the test-condition may have any compound relation and the
" testing need not be limited only to the loop control variable. Consider the example below:

sum = 0;
for (i = 1; 1 < 20 && sum < 100; ++i)
{

sum = sum+i;

printf("%d %d\n", i, sum);
}

The loop uses a compound test condition with the counter variable i and sentinel variable

t sum. The loop is executed as long as both the conditions i < 20 and sum < 100 are true. The
sum is evaluated inside the loop.

' Itis also permissible to use expressions in the assignment statements of initialization and

 increment sections. For example, a statement of the type

: for (x = (m+n)/2; x > 0; x = x/2)
L is perfectly valid.

Another unique aspect of for loop is that one or more sections can be omitted, if necessary.
Consider the following statements:

e — = e R T—m T rmemr w1 T T e —

for (; m = 100 ;)

{
printf(“sd\n", m);
m= mt5;

Both the initialization and increment sections are omitted in the for statement. The initiali-
2ation has been done before the for statement and the control variable is incremented inside
loop. In such cases, the sections are left ‘blank’. However, the semicolons separating the
Sections must remain. If the test-condition is not present, the for statement sets up an ‘infi-
nite’ loop. Such loops can be broken using break or goto statements in the loop.
We can set up time delay loops using the null statement as follows:

for (j =1000; j > 0; § = j-1)

154'

This loop is executed 1000 times *mthout pruducmg any output; it simply cnuses

delay. Notice that the body of the loop contains only a semicolon, known as a null at.a

This can also be written as

for (j=1000; j > 0; § = j-1)

This implies that the C compiler will not give an error message if we place a semlm ol

mistake at the end of a for statement. The semicolon will be considered as a null sto J’r

and the program may produce some nonsense. 3
e -

Nesting of for Loops o , ST

Nesung of loops, that is, one for statement within anuther fnr statamﬂnt is Elllcr’sluI

For example, two loops’ can be nested as follows: i._

-—*fun"ﬁ{i = 13 4 -=-1L‘|; ++1i)

reReydn TRt i M Inner OufEr""‘f
A loop | lToop , 3

PRSP pe——

The nesting may continue up to any desired level. The loops should be properly indented
to enable the reader to easily determine which statements are contained within each fur
ment. (ANSI C allows up to 15 levels of nesting. However, some compilers permit more). - 1

The program to print the multiplication table discussed in Example 6.2 can be wm:tm u- :
concisely using nested for statements as follows: SRR

for (row = 1; row <= ROWMAX ; ++row)

1 " 8
.
R :
e
- I

for (column = 1; column <= COLMAX ; ++column)
.{ - 6l
' "y = row * column; By
Co printf(uadt, y); | :
] 1) }

< ped ntf['\n')

e o —

Decision Making and Looping i 165

TThe outer loop controls the rows while the inner loop controls the columns,

m A class of n students take an annual examination in m subjects, A pro-
" gram to read the marks obtained by each student in various subjects
i and to compute and print the total marks obtained by each of them is

; given in Fig. 6.5.
The program uses two for loops, one for controlling the number of students and the other for
G, ntrolling the number of subjects. Since both the number of students and the number of

bjects are requested by the program, the program may be used for a class of any size and
y number of subjects.

outer loop includes three parts:
* (1) reading of roll-numbers of students, one after another;

i (2) inner loop, where the marks are read and totalled for each student; and
E (3) printing of total marks and declaration of grades.

Program
#define FIRST 360
#define SECOND 240
main() '
{
int n, m, i, j,
roll_number, marks, total;
printf("Enter number of students and subjects\n");
scanf("%d %d", &n, &m):
printf("\n");
for (i = 1; i <= n 3 ++i)
{
printf("Enter roll number : ");
scanf("%d", &roll_number);
total =0 ;
printf("\nEnter marks of %d subjects for ROLL NO %d\n",
m,roll_number);
for (j = 1; § <= m; je+)
{

scanf("%d", &marks);
total = total + marks;
. } :
§ printf("TOTAL MARKS = %d *, total);
- if (total >= FIRST)
. . printf(*(First Division)\n\n");
§ else if (total >= SECOND)
| printf("(Second Division)\n\n"); 3
: else

S printf("(*** F AT L ***)\n\n");

166 |

I s
Output , ’
Enter number of students and subjects
36 y
5 "' Enter roll_number : 8701 .
r ' Enter marks of 6 subjects for ROLL NO 8701 1
81 75 83 45 61 59 | o TR

TOTAL MARKS = 404 (First Division)

“Enter rol1 number : 8702 _

Enter marks of 6 subjects for ROLL NO 8702

51 49 55 47 65 41 e e

TOTAL MARKS = 308 (Second Division)

gter roll_number| : 8704 R EA T
ter marks of 6 subjects for ROLL NO 8704

gfj 19 3147139 25 N TRRAE THURE MR
OTAL MARKS = 201 (:*** FuA: I La%*%,) ..

Given a problem, the programmer's first concern is to decide the type of loop
.| structure to be used. To choose one of the three loop supported by C, we may use
| the following strategy:
| = Analyse the problem and see whether it required a pre-test or post-test loop.
* Ifit requires a post-test loop, then we can use only one loop, do while.
* If it requires a pre-test loop, then we have two choices: for and while.
* Decide whether the loop termination requires counter-based control or senti-
nel-based control.
* Use for loop if the counter-based control is necessary.
* Use while loop if the sentinel-based control is required.
* Note that both the counter-controlled and sentinel-controlled loops can be im-
plemented by all the three control structures,

.....

6.5 JUMPS IN LOOPS

Loops perform a set of operations repeatedly until the control variable fails to sati sfy &
test-condition. The number of times a loop is repeated is decided in advance and he K
condition is written to achieve this. Sometimes, when executing a loop it becomes desi alg
to skip a part of the loop or to leave the loop as soon as a certain condition occurs. K&
example, consider the case of searching for a particular name in a list containing, say, 1§
names. A program loop written for reading and testing the names 100 times must be te L

|
I1ET

d
e 4 Ll
add -

o

| 8 '- ted as soon as the desired name is found. C permits a jump from one statement to another
 within a loop as well as a jump out, of a loop.

.;jumping Out of a Loop

‘An early exiti from a loop can be accomplished by using the break statement or the goto

& iatement. We have already seen the use of the break in the switch statement and the goto
B .. the if...else construct. These statements can also be used within while, do, or for loops.
“They are illustrated in Fig. 6.6 and Fig. 6.7.
! When a break statement is encountered inside a loop, the loop is immediately exited and
the program continues with the statement immediately following the loop. When the loops
‘ure nested, the break would only exit from the loop containing it. That is, the break will
fixit only a single loop.

| Since a goto statement can transfer the control to any place in a program, it is useful to
(provide branching within a loop. Another important use of goto is to exit from deeply nested
Hloops when an error occurs. A simple break statement would not work here.

5'1 e "
j { (
| 3 if(condition) if(condition)
3 break; break;
Exit Perepenss Exit
from from
loop) loop Jwhile (-—);
(a) (b)
for (—---) for ()
{ {
1 if(error) [
] Eis rwaly if (condition)
- gy [Ml
gt i Toop | from }
r ke Sk inner
B loop
1)
- (c) (d)
RN e e e T e R R s e

Fig. 6.6 Exiting loop with break statement

|
1EE|

(! whi it oo) for (=)

i { R s

1 if(error) for ()

f goto stop; —_ {

@ if(condition) | Exit itlerror)

<] — goto abc; from

90 " goto error;

i - Yoop Exit ' .
within ke }
loop reosi rom | da '

.........

The program In Fig. 6.8 llustrates the use of the break statement'li
program. :
The program reads a list of positive values and calculates their average. The for 068
written to read 1000 values. However, if we want the program to calculate the average GiaR
set of values less than 1000, then we must enter a ‘negative’ number after the last vail 414
the list, to mark the end of input. R

Program
main()
{
int m;
float x, sum, average;

printf(*This program computes the average of a
set of numbers\n®");

printf("Enter values oneafter another\n");

printf(*Enter a NEGATIVE number at the end.\n\n");

sum = 0;

for (m =1 3; m< = 1000 ; ++m)

IR e AR T R s w

scanf("5f", &x);
if (x < 0)
break;
sum += X ;
}
average = sum/(float)(m-1);
printf(*"\n");

Decision Making and Looping I! 169

printf("Number of values ° d\n", m-1);
print F{"Sum fA\n", Sum);
printf("Average f\n", average};

Output
[hic program computes the average of a set of numbers
Enter values one after another

Enter a NEGATIVE number at the end.
71 23 24 22 26 22 -1
Number of values = B

Sum = 138.000000
Average - 23.000000

Fig. 6.8 Use of break in a program

when it is read. is tested to see whether it is a positive pnumber or not. 11t 1s

" Bach value,
wminates. On exit, the average

Iositive, the value is added to the sum; otherwise, the loop t
9ol the values read s caleulated and the results are printed out,

_E{n‘nple 8.6 A program io evaluate the series

| 1 "
=1 +%X+ %5 +X % S

& s .
iy -1 = X

< 1 with 0.01 per cent accuracy is given in Fig. 6.9. The gote
{temient is used W exit the loop on achieving the desired accuracy.

o perform the repeated addition of each of the terms in the
ion of the function is terminated when the
decides the number of loop opera-
a value of 100, which may or

We have used the for statement €

 series. Since it 12 an infinite series, the evaluat

term x° reaches the desired accuracy. The value of n that

: tions is not known and therefore we have decided arbitrarily
may not resilt in the desired level of accuracy.

Program
Ydefine LOOP 100
fdefine ACCURACY 0.000] f
main() |
! |
1.

-
TR *
int n;

float x, term, sum;
orintf("Input value of x : il B |
scanf("%f", Bx);

sum = U ; 3
for (term = 1, n = 1 ; n <= LOOP ; ++n)

o R o i b [ey 0

sum += term
i f (term <= ACCURACY)

___—4

goto output; /* EXIT FROM THE LOOP */

term *= x ;
)
r} printf(*\nFINAL VALUE OF N IS NOT SUFFICIENT\n");
f? printf("TO ACHIEVE DESIRED ACEURACT\n“]; '
£ goto end; '
F output:

printf("\nEXIT FRDH LOOP\Nn") ;

printf("Sum = %f; No.of terms = %d\n", sum, n);

end: .
s/ Ml Shaqmnt *;‘

] .

Output Zf : ' '

Input value of x : .21 :

EXIT FROM LOOP g ; '

Sum = 1.265800; No.of terms = }'

Input ‘value of x :'.?5 Froe L i
EXIT FROM LooP ' @ METISEY ksl
Sum = 3.999778; No.of terms = 34 '

Input value of x : .99 :
FINAL VALUE OF N IS NOT SUFFICIENT
TO ACHIEVE DESIRED ACCURACY

The test of accuracy is made using an if statement and the goto statement exits thell
as soon as the accuracy condition is satisfied. If the number of loop repetitions is J:u: Jar
enough to produce the desired accuracy, the program prints an appropriate messs

Note that the break statement is not very convenient to use here. Both the norm :j" X
and the break exit will transfer the control to the same statement that appears next-
loop. But, in the present problem, the normal exit prints the message

“FINAL VALUE OF N IS NOT SUFFICIENT

TO ACHIEVE DESIRED ACCURACY™

and the forced exit prints the results of evaluation. Notice the use of a null statemant
end Thm is necessm becau&e a prugrnm should not and with a label. P

| Structured programming is an approach to the design and development of pro-
| grams. It is a discipline of making a program’s logic easy to understand by using
only the basic three control structures:
* Sequence (straight line) structure
%& ¢ Selection (branching) structure
o

Decision Making and Loaping | 171

e Repetition (looping) struciure

While sequence anel oup struct

LI
programming, the selection stru
tlerns,

Are sulhicient b mest all the

BTy i)
tre proves 1o v more o

MWEMIONT 11 sone il

The use of structiured Programming technigues helps

Brams that are easier o write, read s
unstructured.

nsure well-designed piro.
Bug ane matntain « ompared to those that e

Structured Rrogramming discourages the in

INg using jump statements such 45 gola, b
structured programming s

iplementation of unconditional branch-
reak and continue,

In its purest form,
synonymous with “gota less |

Jrogramming”.

Do not go 10 goto stutement!

Skipping a Part of a Loop

During the loop operations, it may be necessary to skip a part of the body of the loop under
L tertain conditions. For example, in processing of applications for some Job. we iight like te
exciude the processing of data of applicants helonging to u cortain ciategory, On reading the
eategory code of an applicant, a test is made 1o see whetlier his apphication should he consid
-ered or not. If it is not to be considered. (he part of the program loop that provesses (e
application detaily iy skipped and the execution contmues with Lhe

Like the break stiatement

: C supports anothe
| Statement. However, unhke the hreak whic

tinue, 4y (he name implies, causos

next loop operat ion
v similar statement called the ¢

h couses the Itlﬂp to be ternunated,
the loop to be

ontinue

the con-
ontinued with the next iterition aflor
PPing uny statements in botween, The continue statement tells the conipiler. “SKIp

] THE FOLLOWING STATEMENTS AND CONTINUE WITH THF NEXT ITERATION” The
. at of the continue statement is simply

continue;

The use of the continue statement in
» Continue cay
teration proces

loops is ilustrated in
ses the control ta go directly to the
8. In the case of for loop, the inere
ore the test-condition is evaluated,

Fig. 6.10. In while and de
Lest-condition and then to continye
ment section of the loop is exe

l,'llll-fi

e

= while (test-condition)

ilo
| | :
L m=ss) R |
- Continue; ' we s continue:
| . P while (test.condit an)
(a)

172} Programming inANSIC

—>for (initiolization; test condition; increment)

o g,
oy o
—

el e

g

! % IJ“""" 1;j~"'|ll1|.lllr-'-l'i|r|| i' |I '-r'ﬁ” d l'“r"b '\'IH“?:IH‘:!E::L

Thn program evaluates the square root of a series of numbers and prints the res
process stops when the number 9999 is typed in.

In case, the series contains any negative numbers, the process of évaluation vf squi
should be bypassed for such numbers because the square root of a negative numh-ar
defined. The continue statement is used to achieve this, The program also prints a m 1
saying that the number is negative and keeps an account of negative numbers, + | st

The final output includes the number of positive values evaluated and the numbegigh
negative items encountered. itk

Program:
#include <math.h>
main()

int count, negative;
double number, sqroot;
printf("Enter 9999 to STOP\n");
count = 0 ;
negative = 0 ;
while (count < = 100)
{
printf("Enter a number : “);
scanf("%1f", &number);
if (number == 9999) _
break; /* EXIT FROM THE LOOP */
if (number < Q)
(
printf("Number is negative\n\n");
negative++ ;
continue; /* SKIP REST OF THE LOOP */
)

. — * Degison Haking and Laopi . B

A sqroot = sqrt(number);
: 1 printf("Number = %1f\n Square root = %1f\n\n",
number, sqroot):

count++ ;
J
printf("Number of items dome = %d\n*, count);
printf("\n\nNegative items = %d\n", negative);
printf("END OF DATA\n");

\ }
Output
Enter 9999 to STOP
Enter a _numhellr P 23,0

Number v = 25,000000
Square root = -5,000000

Enter a number : 40.5
Number = 40.500000
Square root = 6.363961

Enter a number : -9
Number is negative

Enter a number : 16
Number = 16.000000
Square root = 4.000000

Enter a number : -14,75
Number is negative

Enter a number : B0
Number = §0.000000
Square root = B.944272

Enter a number : 9999
Number of items done = 4
Negative {tems = 2
END OF DATA

T e S s e 0 g

I i o, il

< PE AN SRR ERE SR T e G e e P
o Fig 81 Use of continue stotement
A LT RO AN T O e S AN TR Fated ol

Avoiding goto

As mentioned earlier, it is a good practice to avoid using goto. There are many reasons for
this, When goto is used, many compilers generate a less efficient code. In addition, usging
Many of them makes a program logic complicated and renders the program unreadable, It is
Possible to avoid using goto by careful program design. In case any goto is absolutely neces-
Hary, it should be documented. The goto jumps shown in Fig. 6.12 would cause problems and
therefore must be avoided.

|
1?4|

Jumping out of th""' Program

We have just seen that we can Jump out of a loop using either the break statement or g
statement. In a aimﬂﬂ’wny. we can jump out of a program by using the library funet
exit(). In case, due to some reason, we wish to break out of a program and return to
operating system, we can use the exit() function, as shown below:

ff.f-{i;st-cundltinn] exit(0) ;

LR B

The exit() function takes an integer value as its argument, Normally zero is used ff
indicate normal termination and a nonzero value to indicate termination due to some errg
or abnormal condition. The use of exit() function requires the inclusion of the header fi

6.6/ CONCISE TEST EXPRESSIONS

We often use test expressions in the if, for, while and do statements that are evaluated ant
compared with zero for making branching decisions. Since every integer expression has
true/false value, we need not make explicit comparisons with zero. For instance, the expre:
sion x is true whenever x is not zero, and false when x is zero. Applying! operator, we ca e
write concise test expressions without using any relational operators,

if (expression ==0)
is equivalent to
iftlexpression)
Similarly,
if (expression! = 0) . =
is equivalent to) - ;
if (expression)

For example,
if (m%5==0 && n%5==0) is same as if ((m%5)&&!(n%5))

' Decision Making and Looping 175

- Just Remember

£
¥

o

e

s

#a

s

i

B

B

—

Do not forget to place the semicolon at the end of dowhile statement.
Placing a semicolon after the control expression in a while or for state
ment is not a syntax error but it is most likely a logic error.

Using commas rather than semicolon in the header of a for statement is
an error,

Do not forget to place the increment statement in the body of a while or
do...while loop, ;

It is a common error to use wrong relational operator in test expressions,
Ensure that the loop is evaluated exaétly the required number of times.
Avoid a common error using = in place of = = operator,

Do not change the control variable in both the for statement and the body
of the loop. It is a logic error.,

Do not compare floating-point values for equality.

Avoid using while and for statements for implementing exit-controlled
(post-test) loops. Use do...while statement. Similarly, do not use
do...while for pre-test loops.

When performing an operation on a variable repeatedly in the body of a
loop, make sure that the variable is initialized properly before entering the
loop.

Although it is legally allowed to place the initialization, testing and incre-
ment sections outside the header of a for statement, avoid them as far as
possible,

Although it is permissible to use arithmetic expressions in initialization
and increment section, be aware of round off and truncation errors during
their evaluation,

Although statements preceding a for and statements in the body can be
placed in the for header, avoid doing so as it makes the program more
difficult to read.

The use of break and continue statements in any of the loops is consid-

ered unstructured programming. Try to eliminate the use of these jump
statements, as far as possible,

Avoid the use of goto anywhere in the program,

Indent the statements in the body of loops properly to enhance readability
and understandability.

Use of blank spaces before and after the loops and terminating remarks
are highly recommended.

Use the function exit() only when breaking out of a program is necessary.

|
1TE|

e g _.;,. é@}:m

1. Table of Binomial Coefficients

Problem: Binomial coefficients are used in the atud_v of binomial distributions and rella il

ity of multicomponent redundant systems. It is given h:,r

B{mﬁj [1) xi(m-x),’ ke
A table of hinnmial coefficients is mqu:red to determine the bmumml coefficient for any
Im B.I'Id X.

Problem Annlyﬂia The ;mnmlal meﬂimaqt can b-u rer;urmvel}' calculatad as follows:
H{m,n}wl o L2 i} i \ -
B(mx) = Bmx-1) [=X ‘}
Further, S ' _
| M 0 i e A S
That is, the binomial coefficient is one when either x is zero or m is zero, The program |

Fig. 6.12 prints the table of binomial mfﬁﬂenu Iur m = lﬂ The pmgrnm employs one § d
loop and one while loop. : . :

=

123 L e

SMEE NSNS SRS W NS B———————T e

Program
fdefine MAX 10
main()
{
int m, x, binom;
printf(* m x");
for (m = 0; m <= 10 ; ++m)
~printf("%4d", m); :
printf("\n———— e \n"):
m= 03 '
do
{
printf("%2d ", m);
x = 0; binom = 1;
while (x <= m)
("
if(m == 0 || x == 0)
printf("%4d", binom);
else
{
binom = birom * (m - x + 1)/x;
printf(“54d", binom);

= ~——— 'Decision Making and Looping * {177

X=x+ 1;

|
printf("\n");
me=m+ 1;

}

i while (m <= MAX);

L L R w*):

2. Histogram

Problem: In an organization, the employees are grouped according to their basic pay for the

Furpfme of certain perks. The pay-range and the number of employees in each group are as
ollows-

Group Pay-Range Number of Employees
1 760 - 1500 12
2 1501 - 3000 23
3 3001 - 4500 35
4 4501 - 6000 20
o above 6000 11

Draw a histogram to highlight the group sizes.

Problem Analysis: Given the size of groups, it is required to draw bars representing the
Wzes of various groups. For each bar, its group number and size are to be written.

Program in Fig. 6.13 reads the number of employees belonging to each group and draws a
histogram, The program uses four for loops and two if.....clse statements.

—

Prograom: >
fdefine N 5
main()

(

int value[N]:

it 1,3, n, x3
for (n=0; n < N; ++n)
{
printf(*Enter employees in Group - %d : ".n+l):
scanf("%d", &x):
value[n] = x;
printf(*%d\n", value[n]);
}
printf("\n");
printf(*|\n");’
for (n =0 ; n<N; +n)
{1
for (1 =1 ;1 <= 3 ; §44)

if(1e==2)
printf("Group-%1d |",n+1);

else L.

printf(*|*);

for (J =1 ;j <= va1ue[n]. t+j)

printf{“"]
if (1 ==2)
printf(*(%d)\n", value[n]);
else
printf("\n*);
}
printf(*|\n");
J
)
Output

Enter employees in Group - 1 : 12
12
Enter employees in Group - 2 : 23 :
23
Enter employees in Group - 3 : 35
35
Enter employees in Group - 4 : 20
<0
Enter Employees in Group - 5 : 11
11

rlrﬁliil'il'*til

GFDUD-I Iiti---itﬁ**iflzl
Iiiiltttitn!i

|

Jiiilil*i*l*til-lti*t*.t

Decision Making and Looping — —1 179

GVUup,H 1ililliltill#iilitlbtlll[?]}

I EE RS LSS RERREER TN RS B
|

|-ppa-pllthtiliiltlﬂll!ii---ii#ilib
GF{JUﬂ'a I‘l.ilii.ltll'ﬁllllllﬂ*il:l'l'ii-ill-*i'{lﬁl
|-iihtitibiitlil'llilil*liIiItIlJiT*

|-l1&t#l\nﬁi|t-tiiili

ﬂrﬂup-ﬂ Eltlb!i#nni#knntniliiizu}
I-ntitrtnitn*ttt+t-ln

|-litiliilhi

GTUUP+5 'IIliIili!it*{ll]
Iltlt.tt*iiﬁ

1
:
J
|
:
1

Fig. 6.13 Program to draw a histogram

'3, Minimum Cost

Problem: The cost of operation of a unit consists of two components C1 and C2 which can be
expressed as functions of a parameter p as follows:

C1 = 30 - 8p
C2=10+p’

' The parameter p ranges from 0 to 10. Determine the value of p with an accuracy of + 0.1
where the cost of operation would be minimum,

- Problem Analysis:
Fotal cost = C, + C, = 40 - 8p + P.E
The cost is 40 when p = 0, and 33 when p = 1 and 60 when p = 10, The cost, lhl:-ru:-.l'n.rt!,
decreases first and then increases. The program in Fig. 6.14 evaluates the cost at successive

intervals of p (in steps of 0.1) and stops when the cost begins to increase. The program
employs break and continue statements Lo exit the loop.

Program
main()
I
float p, cost, pl, costl;
for (p = 03 p <= 10; p = p + 0.1)
[
cost =40 -8B *p +p * P
if(p == 0)
|

cost] = cost;

130} : U Programming in ANSI G | —— =

4 continue; 3 1

i) 1

s if (cost =»= costl) i

¥ break; 3
costl = cost; 18
pl = pi ;

}

p=(p+pl)ja.o;

cost = 40 - 8 *p + p * p;

printf("\nMINIMUM COST = %.2f AT p = %.1f\n",
cost, p);

kst oas i MR

}
Output

INIMUM COST/= 24.00 AT p

C. o .--ll' R o
e e e e T

o P TR e e e] o

i

=4.0 .

4. Plotting of Two Functions

Problem: We have two functions of the type &
yl = exp (-ax) Yy
y2 = exp (-ax’12) .
Plot the graphs of these functions for x varying from 0 to 5.0. e 1
Problem Analysis: Initially when x = 0, y1 = y2 =1 and the graphs start from the same :
point. The curves cross when they are again equal at x = 2.0. The program should hayes
appropriate branch statements to print the graph points at the following three conditionsge
1. yl>y2 %
2 yley2
d yl=y2
The functions y1 and y2 are normalized and converted to integers as follows: ¥
yl = 50 exp (~ax) + 0.5 b
y2 = 50 exp (-ax*/2) + 0.5

The program in Fig. 6.15 plots these two functions simultaneously, (0 for y1, * for y2, and £
for the common point). g

- Program _lt:
e #finclude <math.h>
& main() 3o
g { Al
int i; o8
g float a, x, yl, y2; e
3 a=0,4;
? printf(" | RO, < \n"):

printf(" 0 ———————— e \n");
for (x = 0; x < 5; x = x+0.,25) -
{ /* BEGINNING OF FOR LOOP */

L I Evaluation of functions */
yl = (int) (50 *exp(-a *x) + 0.5);
y2 = (int) (50 * exp(-a * x * x/2) + 0.5);

F dai e Plotting when yl = y2......... *f
if (yl == y2)

{
if (x == 2.5)
printf(* X |*);
else
printf("|");
for (1 = 1; 1 <= yl = 1; ++i)
printf(" *); »
printf("#\n");
continue;
} . .

/*.vive. Plotting when yl > y2*/

if (y1>y2)
{

if (x==25)
printf(" X |");

else
printf(" |");

for (1 = 1; 1§ <= y2 =1 ; ++i)
printf(" ");:

printf(**");

for (1 = 1;. 1 <= (yl = y2 = 1); ++i)
printf(*-"); ' '

printf("0\n");

continue;

f L PR Plotting when y2 > yl..... vaue ¥
if (x == 2.5) |
printf(® X |");
else
printf(" |");
for { 1 =1 ; 1 <= (yl = 1); ++i)
printf(* ");
printf("0");
for (1 =1; 1 <= (y2 - yI = 1); #+{)
printf("-"); '
printf(**\n");
} END OF FOR LOOP........ */
printf(* |\n");

|
132.

Output Y. -
0. 4 cxeive
' E %
£ B
:- U """ i ::-'
E R . F
u_ _____ L
Demmem= " k
B | B
| 0-*
' #
E e o0
X *een
5 teenn 0
s > W
! e 0
i W oo 0 ;
¥ menna 0
T 0
® o srin 0
 JERR 0
o 0

.E\rlaw Questions

6.1 State whether the following statements are true or false.

(a) The do...while statement first executes the loop body and then evaluate the l P
control expression. e

(b) In a pretest loop, if the body is executed n times, the test expression is execu _-"~.f;
n + 1 times.

(¢) The number of times a control variable is updated always equals the number r;
loop iterations.

(d) Both the pretest loops include initialization within the statement. ;

(e) In a for loop expression, the starting value of the control variable must be --.
than its ending value. {3

() The initialization, test condition and increment parts may be missing in a for

statement. s
(g) while loops can be used to replace for loops without any change in the body of ﬂlﬁ‘
loop. E

=

;" - d

“DelyoRTakingandlLoopine
(h) An exit-controlled loop is executed a minimum of one time.

(i) The use of continue statement is considered as unstructired programming.

(j) The three loop expressions used in a for loop header must be separated by com-
mas,

6.2 Fill in the blanks in the following statements.
(a) In an exit-controlled loop, if the body is executed n times, the test condition is
evaluated times,
(b) The ________ statement is used to skip a part of the statements in a loop.
(e) A for loop with the no test condition is known as loop.
(d) The sentinel-controlled loop is also known as loop.
(e) In a counter-controlled loop, variable known as is used to count the loop
operations,
6.3 Can we change the value of the control variable in for statements? If yes, explain its
consequences,
6.4 What is a null statement? Explain a typical use of it.
6.5 Use of goto should be avoided. Explain a typical example where we find the applica-
tion of goto becomes necessary,
6.6 How would you decide the use of one of the three loops in C for a given problem?
6.7 How can we use for loops when the number of iterations are not known?
. 6.8 Explain the operation of each of the following for loops.
(a) for (n=1; n 1= 10; n +=2)
Sum = sum + n;
(b) for (n = 5; n <= m; n -=1)
sum = sum + n;
(c) for (n = 1; n <= 5;)
. Sum = sum + n;
(d for (n=1; ;n=n+1)
Sum = sum + n;
() for (n = 1; n < 5; n ++)
n=mn-l
6.9 What would be the output of each of the following code segments?
(a) count = 5;
while (count -- > Q)
printf(count);
(b) count = 5;
while (-- count > 0)
printf(count);
(c) count = 5;
do printf(count):
while (count > 0):
(d) for (m = 10; m> 7, m -=2) ’
printf(m);
6.10 Compare, in terms of their functions, the following pairs of statements:
{a) while and do...while
(b) while and for

134}

(¢c) break and goto i
(d) break and continue '
(e) continue and goto : 5
6.11 Analywaachnfthapmgmmmmtﬂhatful]ﬁwanddatarmmehﬁwmanyt:mm
body of each loop will be executed. _ _ 2

(a) x = 5;

y = 50;
while (x <= y) . _
X = y/x; : ‘ Y A e

—]

m = m2; ; ot oads g 3w b nopn s ol
} - !
while (m < 10); A
{c) int i;

for (1 = 0; 1 <= 5; 1 = i42/3)

{

)
(d) int m = 10;
int n = 7; L
while (m % n >= u}
{

fin]
i

m=m+1;
n=n+2;
)

6.12 Find errors, if any, in each of the following looping segments. Assume that all the
variables have been declared and assigned values.

(a) while (count 1= 10); 5
() o
count = 1; il O ; '
sum = sum + x;
count = count + 1;

A1

(d) for (x =1,

(b) name = 0.

do { name = name + |
printf(*My name is John\n*):)
while (name = 1)

(c) do;

total = total + value;
scanf("%f", Svalue);

while (value |= 999);

X>10; x = x + 1)

() m=1;

n=0;

for (; mn < 10; ++n);
printf("Hello\n*):
m=ml10

(D for (p = 10; p > 03)

6.13 Write a for statement to print each of th

P=p-1
printf(*sf*, p):

(a) 1,2, 4,8, 16, 32
(b) 1,3,9, 27, 81, 243
(c) ~4,-2,0,2 4

(d) -10,-12, 14, -18, -26, - 42

6.14 Change the following for |
(a) for (m = 1; m < 10;
printf(m);

(b) for (; scanf("sd*, & m 1= -1;)

printf(m);

6.15 Change the for loops in Exercise

e following sequences of integers:

00ps to while loops:

m=m+ 1)

6.16 What is the output of following code?

inlm=ll}ﬂ,n=ﬂ;
while (n ==0)

|
if (m<10)
break:
m=m-10;
6.17 What is the output of the following code?
intm=90 ;
do

{

6.14 to do Inope.

186 |

6.18

R A T ot Y !-r_. T B
 Progranming in ANS| C

if (m>10) .

continue ;

m=m+ 10 ;
} while ((m<50) ;
printf(*%d", m);
What is the output of the following code?
intn=0,m=1;

do

6.19

6.20

[; e
printf(m) ;

me : :
} /
while (m <= n) ; _
What is the output of the following code?
intn=20,m;
for (m=1; me=n+1; m+)
printf(m);

When do we use the following statement?
for (5 ;)

. -
.rngrammlng Exercises G

6.1

6.2

6.3
6.4

6.5
6.6

Given a number, write a program using while loop to reverse the digits of the num
ber. For example, the number
12345
should be written as
54321
(Hint: Use modulus operator to extract the last digit and the integer division by 10 to get the n-
| digit number from the n digit number.)
The factorial of an integer m is the product of consecutive integers from 1 to m. That lq

factoriallm=m!=mx (m-1) x ... x 1.

Write a program that computes and prints a table of factorials for any g-iven m.
Write a program to compute the sum of the digits of a given integer number,

il

The numbers in the sequence :,i
1123581321 ;
are called Fibonacei numbers. Write a program using a do...while loop to calculati

and print the first m Fibonacei numbers.

(Hint: After the first two numbers in the series, each number is the sum of the’ h\ﬂ
preceding numbers.)

Rewrite the program of the Example 6.1 using the for statement.
Write a program to evaluate the following investment equation

i

|
1181'

V= P(1+r)"

and print the tables which would give the value of V for various combination of the
following values of P, r, and n.

P : 1000, 2000, 3000,........, 10,000
r:0.10,0.11,0.12,, 0.20
n:1,23,...10

(Hint: P is the principal amount and V is the value of money at the end of n years.
This equation can be recursively written as

V= P(1+r1)
P=V
That is, the value of money at the end of first year becomes the principal amount for
the next year and so on.)
6.7 Write programs to print the following outputs using for loops.
{'a} 1) (‘b} L
22 L
333 L
4444 e
5565565 .

6.8 Write a program to read the age of 100 persons and count the number of persons in the
age group 50 to 60. Use for and continue statements.
6.9 Rewrite the program of case study 6.4 (plotting of two curves) using else...if con-
structs instead of continue statements,
6.10 Write a program to print a table of values of the function

y = exp (-x)
for x varying from 0.0 to 10.0 in steps of 0.10. The table should appear as follows:

Table for Y = EXP(-X)

9.0
6.11 Write a program that will read a positive integer and determine and print its binary
equivalent.
(Hint: The bits of the binary representation of an integer can be generated by repeat-
edly dividing the number and the successive quotients by 2 and saving the remainder,
which is either 0 or 1, after each division.)

188 - progratming in ANSIC

4y e AR 5

6.12 Write a program using for and if statement to display the capital letter S in a grid nl‘
15 rows and 18 columns as shown below.
I E S S SRR N EE RS

L *
o
TR
TR
SRRk ok E :
___________________ ok kh
_______________ M
* %k %
f R R
] "
) Lol OB Sl e BT A TR T Y] . Al
S AP f e R . *h o w |
W {EITRNSCISE T8 RS TR .1 e x

6.13 Write a program to compute the value uf Euler’s number e, that is used as the base 0
natural logarithms. Use the following formula. '

e=1+1/11+1/21+1/31+..... + 1 /n! 3
Use a suitable loop construct. The loop must terminate when the dlﬂ'erenne betw o1,
two successive values of e is less than 0.00001.
6.14 Write programs to evaluate the fulinmnp funrhnns to D BDDI% nu:uracjr

(@) sinx'=x=x/3! + x5! x40, -
(b) cosx=1—x/2! + x"41 —x%61 + :
(c) SUM=1+(1/2)* + (1/3)* + (1/4)* + ... i : =
6.15 The present value (popularly known as book value) of an item is given by the relation:
ship, 0 |
P=c(1-d)"
where ¢ = onginal cost
-d = rate of depreciation (per year) - -
n = number of years

p = present value after y years.

IfP is considered the scrap value at the end of useful life of the item, write a progrant
to compute the useful life in years given the original cost, depreciation rate, and he
scrap value.
The program should request the user to input the data interactively.

6.16 Wntenprugramtnprmtasquﬂreufs:ze&byuamgthamnmctarﬁnsahuwnhel -

(@) 8.-8--8-8.8-. - {b}SSSSS —
Sr EESS S‘ v Mg eyt '!l-'-'.:s.- 8. . } ‘i
S 88 8 8§ S S
S S 8.8 8 - 8/ S
8.8 8.8 8 » 83 & 8 8 8

— — Decision Making and Lonpin; — 4 189

6.17

6.18

6.19

6.20

Write a program to graph the function
Y = sin (x)

in the interval 0 to 180 degrees in steps of 15 degrees. Use the concepts discussed in
the Case Study 4 in Chapter 6,

Write a program to print all integers that are not divisible by either 2 or 3 and lje
between 1 and 100, Program should also account the number of such integers and
print the result.

Modify the program of Exercise 6. 16 to print the character O instead of S at the center
of the square as shown below. £

