Operators and
Expressions

INTRODUCTION

34

C supports a rich set of built-in operators, We have already used several of them, -
+,—, *, & and <. An operator is a symbol that tells the computer to perform certain
ematical or logical manipulations. Operators are used in programs to manipulate da
variables. They usually form a part of the mathematical or logical expressions.
C operators can be classified into a number of categories. They include:
Arithmetic operators :
Relational operators . i
Logical operators - :
Assignment operators.
Increment and decrement operators f
Conditional operators 3
Bitwise operators AP
. Special operators i
An expression is a sequence of operands and operators that reduces to a single valu
example, : e

10 + 15
is an expression whose value is 25. The value can be any type other than void.

R

3.2| ARITHMETIC OPERATORS ok | ' e

C provides all the basic arithmetic operators. They are listed in Table 3.1. The operatd
,*, and / all work the same way as they do in other languages. These can operaté0
built-in data type allowed in C. The unary minus operator, in effect, multiplies its
operand by —1. Therefore, a number preceded by a minus sign changes its sign.

- - ~————eemeee —— QOperators and Expressions : - |53

A Table 3.1 Arithmetic Overatars
. F {mfﬂr ,:u.‘g'“:irl,r:,"
oy ™ Addiwen or unan plus
.-|| _ Syt errmevioin ¥ Vies
E * Afalitnlwestior
[Hr s

k"- " Modulo diviane

~ Integer division truncates any fractional part. The modulo division operation produces
» remainder of an integer division. Exampies of use of arithmetic sperators are:

a ‘b at+b

..Iuﬂ;t'-l a*h

Here a and b are variables and are known as operands. The module division operator %
scannot be used on [loating point data. Note that € does not have an operator for
exponentiation. Older versions of C does not support unary pius but ANSI C supports it.

Integer Arithmetic

iWhen both the operands in a single anthmeuc expression such as a+bh are integers, the
& expression is called an :nfeger expression, and the operation is called integer arithmetic.
J'==* ge: mﬂzmeﬁc alwavs vields an integer value. The largest inieger value depends on the
£ '. achine, as pointed out earhier. In the above exampies. if a and b are integers, then fora =
‘14 and b = 4 we have the following results

a-b = 10
a+b = 18
a*bh = 056

a/b = 3:decimal part truncated:
38 a%b = 2tremainder of divisiond

- During integer division, if both the aperands are of the same <ign. the result is truncated
__'i owards zero. If one of them ig negative, tne direction ol Lruncnon s implementation
-'I'}'_ MENOen t‘ 'Ihat isf

8 e -
S

7=0and -& 7T =i
3t ~6/7 may be zero or —1. (Machine devendent ‘
Emdﬂﬂj", during module divisien, the sign of the re=ult - abwags the sign of the first
- Perand (the dividend: That is

..d-_,v ke

ki

-14%3 = -2
~14%-83 = -2

145-83 = 2

G S
Ll

gomple 3.11 The program in Fig. 3.1 shows mg; use of integer withmetic 10 convert o

= 4 |

= : . N . o arial s
given number of days Inic § ond Ia,

Program
~ main ()
{
int months, days ;

printf("Enter days\n") ;
scanf("%d", &days) ;

months = days / 30 ;
qa]r‘si-ﬁ days % 30 ;
printf("Months = %d Days = %d", months, days) ;

} .
Output “l/

! Enter days . y . : 0 15 G R 8yl
F bt i 265 i 1 ! u ! ¥

JELPE pdig el iy ! e Months, = B.Days = 25 - - - L L It T 7:-

: Enter days &

364 LTt bl PR A i-__i

Months = 12 Days = 4 _ ! §

Enter days ‘ -

45 A

Months = 1 Days = 15 S e

— L.

The variables months and days are declared as integers. Therefore, the statement

months = days/30; .

truncates the decimal part and assigns the integer part to months, Similarly, the staten
gl days = days%30; bi T

assigns the remainder part of the division to days. Thus the given number of day:
converted into an equivalent number of months and days and the result is printed as she

in the output. i

ket

Real Arithmetic o
An arithmetic operation involving only real operands is called real arithmetic. A real ope!
may assume values either in decimal or exponential notation. Since floating point values
rounded to the number of significant digits permissible, the final value is an approximati
of the correct result. If x, y, and z are floats, then we will have:

' - ' x=6.07.0=0.857143 s

y = 1.0/3.0 = 0.333333 (o

\ z =-2.0/3.0 = -0.666667 - :
<" The operator % cannot be used with real operands.

~—————— Operators and Expressions , 55
g tixed-mode Arithmetic

Vhen one of the operands is real and the other is integer, the expression is called a mixed-
; ode arithmetic expression. If either operand is of the real type, then only the real operation
‘#, performed and the resull is always a real number. Thus

& 15/10.0 = 1.5

15/10=1

iMore about mixed operations will be discussed later when we deal with the evaluation of
SSI0NS.

3| RELATIONAL OPERATORS

We often compare two quantities and depending on their relation, take certain decisions. For
sxample, we may compare the age of two persons, or the price of two items, and so on. These
gmparisons can be done with the help of relational operators. We have already used the
8¥mbol ‘<’, meaning ‘less than'. An expression such as

a<borl <20

laining a relational operator is termed as a relational expression. The value of a relational
. sion is either one or zero. It is one if the specified relation is true and zero if the
1- tlnn 18 false. For example

10 < 20 1s true
20 < 10 is false
: C '“FPW'I.! six relational operators in all. These operators and their meanings are shown
e J.2,
Table 3.2 Relational Operators
Operator Meaning
% is less than
\Z " 1s less than or equal to
el is greater than
A >e is greater than or equal to
E_ = 15 equal to
— - is not equal to

" A simple relational expression contains only one relatmnai operator and takes the
i’"“"'“'ﬂ form:

ae-1 and ae-2 are arithmetic expressions, whlch may be mmple constants, vanah
combination of them. Given below are some examples of am:ple mlahunal upmam s
their values: 7

4.5 <= 10 TRUE _
4.5 <-10 FALSE -3
-35 >= 0 FALSE :
10<7+5TRUE

~ a+b=c+d TRUE tinly:fthusumufvaluuofaandbmaqual tnthnaumnf‘lr:
d d.

When arithmetic exprz:l:innnu are used on either, side of a relational -operat ‘
arithmetic expressions will be evaluated first and then the results compared. Thi
arithmetic operators have a higher. riority over relational o Lars. iy
mwm are used in decision statements such as if and while to decids
course of action of arunning program., We have already umd the while statement in Ch
1. Decision statements are discussed in d_etml in Chapters 5 and 6. .

is complement of <=
< is complement of b
- is complement nl I=

|| We can simplify an expression involving the not and the less than operators
| using the complements as shown below: :

Actual one Simplified one
Al <y) X Dw y
- Hix>y) . Fio
H(xl=y) X ==y
x<=y) x>y
x> =y) X <y

X|l=y

lx == y),

Operators and Expressions | 57

34| LOGICAL OPERATORS

In addition to the relational operators, C has the following three logical operators.
' && meaning logical AND
|| meaning logical OR
! meaning logical NOT
The logical operators && and | | are used when we want to test more than one condition
and make decisions. An example is:

a>b&& x==10

- An expression of this kind, which combines two or more relational expressions, is termed

. a8 a logical expression or a compound relational expression. Like the simple relational

. expressions, a logical expression also yields a value of one or zero, according to the truth

table shown in Table 3.3. The logical expression given above is true only if a > b is true and
x == 10 is true. If either (or both) of them are false, the expression is false.

Table 3.3 Truth Table

Iy

Value of the expression
op-2

E ap-1 && op-2 ap-1 || vp-2
Non-zero Mon-zero | |
Non-zero 0 0 l
0 Non-zero 0 I
0 0 0 0

Some examples of the usage of logical expressions are:
L. if (age > 55 && salary < 1000)
2. if (number < 0 | | number > 100)
We shall see more of them when we discuss decision statements
: Relative precedence of the rolationa! and logical operators is as follows:

Highest !
> 28 « <=
5. l P
L1
Lowest I
Itis important to remember this when we use these operators in compound expressions.

38| ASSIGNMENT OPERATORS

A"“Ehment operators are used to assign the result of an expression to a variable. We have

Seen the usua) assignment operator, ‘=" In addition, C has a set of ‘shorthand’ assignment
Perators of the form

Where v is a variable, exp is an e::praninn and np is a C binary arithmetic operator. The
operator op= is k:iown as the shorthand assignment operator.
The assignment statement
v op= exp;
is equivalent to ' |
v =vop (exp);
with v evaluated only once. Consider an example
" | h X 4= ,-1-;; ki :
Thiniuameuthaﬁatamant LA ' v ' :
l'l*b‘*n-_ . : §

The ahart.hand upnratm' +- means ‘add_ y+1 to x’ or ‘mmmeni; x by y+1. For y=2,|
above statement hemmﬂ _ e

¥ -

X+ 3,

andwhmthhutatamantme:uutéd,’ﬂﬁadd&dtbi If the old value of x is, say 5, then the

new value of x is 8. Some of the mmmanlr used- shorthand assignment operators are
illustrated in Table 3, 4.

Table 3.4 Shorthand Assignment Operators

"n--+l

at=]

a=a-| . a-—=|

a=n"*(n+l) a*=n+l
a=a/(n+1) ' a/=n+]
a=a%b el a%=h.

The use of shorthand assignment operators has three advantages:

1. What appears on the left-hand side need not be repeated and therefore it
easier to write,

2. The statement is more concise and easier to read. ¥
3. The statement is more efficient, ' i

These advnntngm may be appmnatad if we consider a alightlr more involved statement li
value(5%§j-2) = vﬂn(i*j—!} + delta; : I
With the help of the += operator, this can be written as foﬂnrwa.

value(5%j-2) += delta; i l

It is easier to read and understand i an - :
IR il it and is more efficient because the expression 5%j-2 i

|

S Opsratorsand Expresion | — %

Mpie'3:2 Program of Fig. 3.2 prinfs a sequence of squares of numbers. Note the
- use of the shorthand operator *= .

a*s a;
which is identical to
a=a%a;
replaces the current value of a by its square. When the value of a becomes equal or greater

than N (=100) the while is terminated. Note that the output contains only three values 2, 4
and 16.

Program

fdefine N 100
fdefine A 2
mafn()
‘ {
int a;
a=A;
while(a < N)

printf(*"%d\n", a);
a ‘= a;

B INCREMENT AND DECREMENT OPERATORS

Fnﬂmtwoveryumﬁdupemhmnﬂmerﬂlyfmmdinothmhngumﬂm“utha
Increment and decrement operators: -

+ and -~

Thenperatorﬂnddsltntheupernud,whi]a—-mbtmctsl.Bnthareunmynpemtmand
takes the following form:

++m; is equivalent to m = m#l; (orm +='1;) il "'I
--m; is equivalent tom = m-1; (or m -= 1;) g
We use the increment and decrement statements in for and while loops a:tanswely
While ++m and m++ mean the same thing when they form statements mdapend nil
they behave differently when they are used in upreuamna on thn nght.-hand sule

amgnjnentatatameﬁt. Cui!mderthe fullowmg- nsGr 2hoed & 9
2 L LR | (L U TRASS R i Ol ‘ﬁ.

y = +m; ..
Inthmcn.sa,th&vniuenl‘yam{mwuuldbaﬁ Suppou lfwamwﬁtet.hanbmresta PmET
e ey et
m=5;
Y = mH;

then, the value of y would be 5 and m wnuld be 6. A preﬁxnpr.mtur first adds 1 to the opert
and then the result is assigned to the variable on left. On the other hand, a postfix operal
first assigns the value to the variable on left and then increments the operand.
Similar is the case, when we use ++ (or - -)in ﬂubampted variables. That is, the state
ali++] = 10;
i8 equivalent to !
a[i] = 10;
1= 4+1; 3
The increment and decrement operators can be used in complex statements. Example:
m= nt+ =j+10: 4
Old value of n is used in evaluating the expression. n is incremented after the evaluatil i
Some compilers require a space on either side of n++ or ++n. 3

Increment and decrement operators are unary dperalm and they require
variable as their operands.

» When postfix i+ or =-)is used with'a variable in an expression, the |
expression is evaluated first using the original value of the variable and then
the variable is incremented (or decremented) by one, - OB

* When prefix + + (or - -) is used in an expression, the vanahle is incremented

(or decremented) first and then the emessmn is e*.'aluatbd tmn’g lhe new
value of the variable.

“

* The precedence and associatively of ++ and - opemlnn are the same as
Ihnse nf uharf + and unary -

i :

[-— Operators and Expressions —{ 61

| - CONDITIONAL OPERATOR

A 'ternary operator pair “? :" is available in C to construct conditional expressions of the form
expl ? expl2 : exp3

where expl, exp2, and expd are expressions.
UiThe operator ? : works as follows: exp1 is evaluated first. If it is nonzero (true), then the |
expression exp?2 is evaluated and becomes the value of the expression. If exp! is false, exp3 is
evaluated and its value becomes the value of the expression. Note that only one of the
> ions (either exp2 or expd) is evaluated. For example, consider the following

a = 10;
b = 15;
x=(a>b) ?a:b;

- In this example, x will be assigned the value of b. This can be achieved using the if..else
. statements as follows:
: if (a>b)
x = a;
else
x = b;

F BITWISE OPERATORS
ﬂ.haa a distinction of supporting special operators known as bitw:se operators for manipula-
tion of data at bit level. These operators are used for testing the bits, or shifting them right

| or left, Bitwise operators may not be applied to float or double. 'I‘ab!? 34 lists the bitwise
operators and their meanings. They are discussed in detail in Appendix I

ﬁ.w. Table 3.5 Bitwise Operators

oy
m Operator Meaning
3 & bitwise AND
i | bitwise OR
" mtwase exclusmve OR
= = shift lefi
f ; >> shift raght

B8] sPECIAL OPERATORS

C supports some special operators of interest such as comma operator, sizeof upe'ratnr;
pointer operators (& and *) and member selection operators (. and —> I The;unm:_; El::
sizeof operators are discussed in this section while the pointer operators are QiSCUSSEE £

|
E!I

Chapter 11. Member selection operators which are used to select members of a structure af
discussed in Chapters 10 and 11. ANSI committee has introduced two preprocessor operata

Chapter 14,

The Comma Operator

The comma operator can be used to link the related expressions together. A comma-lir _-:
list of expressions are evaluated lef? to right and the value of right-most expression is (i}
value of the combined expression. For example, the statement : f

ipo ovalue = (x =10, y = 5, x+y); :
first assigns the value 10 to x, then assigns 5 to v, and finally assigns 15 (i.e. 10 + 5) to val
Since comma operator Has the lowest precedence of all operators, the parentheses afl

necessary. Some applications of comma operator are:
In for loops: .

for (n= 1, m= 10, n <=m; n++, m#+)
In while loops: ' |
while (c = getchar(), ¢ I= '10')
Exchanging values: :

t=x, x=y, y=t¢;

The sizeof Operator

The sizeof is a compile time operator and, when used with an operand, it returns the numbet
of bytes the operand occupies. The operand may be a variable, a constant or a data tw

Examp]e:g.; m= sizeul'(sum};
n = sizeof (long int);
k = sizeof (235L);

when their sizes are not known to the programmer. It is also used to allocate memory s
dynamically to variables during execution of a program. il

In Fig. 3.3, the progrom employs different kinds of operators. The resu
of thelr evaluation are also shown for comparison,

Notice the way the increment operator ++ works when used in an expression. In the s
ment

C = ++a - b; :
new value of a (= 16) is used thus giving the value 6 to c. That is, a is incrementad by 1 befg
it is used in the expression. However, in the statement

d = b+ + a;

the old value of b (=10) is used in the expression. Here, b is incremented by 1 after it is us
in the expression. ' '

R T T e LY 1
Operatars an 2 63
We can print the character % by placing it immediately after another % character in the
- control string. This is illustrated by the statement
printf(“a%sb = %d\n", a%b);
The program also illustrates that the expression
c>d?1:0
assumes the value 0 when c is less than d and 1 when c is greater than d.

il

Program

main()

(
int a, b, c, d;
a=15;
b = 10;
C = 443 - b;
printf("a = %d b = %d ¢ = %d\n",a, b, ¢);
d = b+ #a;

printf("a = %d b = %d d = %d\n",a, b, d):
printf("a/b = %d\n", a/b);
printf("a%sb = %d\n", a%b);
printf("a *= b = %d\n", a*=b);
; printf(“"%d\n®, (c>d) 72 1 : 0);
- printf("%d\n", (c<d) 7 1 : 0);

340 ARITHMETIC EXPRESSIONS

An arithmetic expression is a combination of variables, constants, and operators arranged as
Per the syntax of the language. We have used a number of simple expressions in the examples

8o far. C can handle any complex mathematical expressions. Some of the examples
of C expressions are shown in Table 3.6. Remember that C does not have an operator for
EXponentiation.

Table 3.6 Expressions

e ———— S ———

5"‘ d”. by I L g T e i g et e A

axb-¢ a*b-c
(mtn) (x+y) . e flmdn) ® (xty)
[E] a*blc
<
3 +2x+1 3ex*x+20x+1

Variable is any valid C variable name. When the statement is encountered, the expre :
evaluated first and the result then replams the previous value of the variable on thi

hand side. All variables used in the expression must be assigned values before mralua
attempted. Examples of evaluation statements are k-

il

x=a*h-g¢

y=b/c*a

z=a-b/c+d; 3

The blank space around an operator is optional and adds only to improve reac

When these statements are used in a program, the variables a, b, ¢, and d must be det!
before they are used in the expressions. ;

[Example'3.4] The program in Fig. 3.4 lllustrates the use of variables in expres ions a8
their evaluation.

w.ﬁ'.ﬂr*ﬁr,. fomt =i

Output of the program also illustrates the effect of presence of parentheses in expressi
This is discussed in the next section.

T '{h'l

Program \
] tiflis
main() Lk L

{ v ; - [l

float a, b, c, X, ¥, Z;

. - Operators and Expressions {55

q.%9;
b = 12;
c = 3;
r*a-h/3+c*2-1;
y=a-b/(3+c)*(2-1);
z=a-(b/(3+¢c)*2)-1;

£f\n", x);
£$f\n", v);
£f\n", 2);

printf{"x
printf(®y
printf(“z

Ir

I

}
Output

x = 10.000000
y = 7.000000

o — e e — — E—— e ——————————— e —

Fig. 3.4 |lllustrations of evaluation of expressions

@i12| PRECEDENCE OF ARITHMETIC OPERATORS

3

. ithmetic expression without parentheses will be evaluated from left to right using the
gies of precedence of operators. There are two distinct priority levels of arithmetic operators

il
111

High priormty * /%

! Low priormy + -

{1he basic evaluation procedure includes ‘two’ left-to-right passes through the expression.
guring the first pass, the high priority operators (if any) are applied as they are encountered.
anng the second pass, the low priority operators (if any) are applied as they are
peountered. Consider the following evaluation statement that has been used in the program

EFig. 3.4,
5 x = a-b3 + ¢*2-1
Ma=9,b=12 and ¢ = 3, the statement becomes
3 X = 91273 + 3°2-]
e i8 evaluated as follows

irst pass
L Stepl: x = 9_g,3%0
£ Step2: x = 9. 4.6

|
991
Second pass
Step3: x = 5+6-1
Step4: x = 11-1
Stepb: x = 10

These steps are illustrated in Fig. 3.5. The numhers inside parentheses refer to step
bers,

r 1

However, the order of avaluatmn can h-a l:hm:ged by mtrududng pmanthms into ar
presﬂinn Consider the same expression with parentheses as nhnwn below: - i

9-12/(3+3)*(2-1) T

Whenever parentheses are used, the expressions within parentheses assume high
ority. If two or more sets of parantham appear one after another as shown above, 1
pression contained in the left-most set is evaluated first and the nght-mm in the lll’l- G
below are the new utapu b g

L}

.-

First pass J1588

" Stepl: 9126 *(21) - it e
Step2: 9-12/6 * 1 B

Second pass
Stepd: 9-2* 1
Stepd: 9-2

Third pass

Steph: 7 14y
This time, the procedure consists of three left-to-right passes, Hmrﬂer, the num !,
evaluation steps remains the same as 5 (i.e equal to the number of arithmetic operi

Operators and Expressions ——«——— f__.-__l 67

sntheses may be nested, and in such cases, evaluation of the expression will proceed
ard from the innermost set of parentheses. Just make sure that every opening
mrenthesis has a matching closing parenthesis. For example

9-(12/3+3) *2)-1=4
9-((123)+3*2)-1=-2

hile parentheses allow us to change the order of priority, we may also use them to
mprove understandability of the program. When in doubt, we can always add an extra pair
fist to make sure that the priority assumed is the one we require.

Rules for Evaluation of Expression

o First, parenthesized sub expression from left 1o right are evaluated.

o If parentheses are nested, the evaluation begins with the innermost sub-expres-
sion.

* The precedence rule is applied in determining the order of application of op-
erators in evaluating sub-expressions

*» The associativity rule is applied when two or more operators of the same prec-
edence level appear in a sub-expression.

*» Arithmetic expressions are evaluated from left to right using the rules i
precedence.

* When parentheses are used, the expressions within parentheses assume highest
priority.

b -
e

b

SOME COMPUTATIONAL PROBLEMS

g en expressions include real values, then it is important to take necessary precautions to
gie:C 2ainst certain computational errors. We know that the computer gives approximate
ﬂ- 8 for real numbers and the errors due to such approximations may lead to serious
| e . For example, consider the follow ing statements:

E a = 1.0/3.0;

. W b=a* 3.0;

’ h‘ﬁw that (1.0/3.0) 3.0 is equal to 1. But there is no guarantee that the value of b
£y ed in a program will equal 1.

; Sian problem is division by zero. On most computers, any attempt to divide a number
W'tll result in abnormal termination of the program. In some cases such a division
p ice meaningless results. Care should be taken to test the denominator that is likely
zero value and avoid any division by zero.

1

rrors. It is our responsibil

The third problem is to avoid overflow or underflow e
and the result may not prg
AR i

guarantee that operands are of the correct type and range,
any overflow or underflow. ¢!

Output of the program in Fig. 3.6 shows rou nd-off errors that can
computation of floating point numbers. -

"
. < i FLT i | 3 s | * L1

b el e L gum of n terms of 1/n
i e o 1508 -

TS R Y T

. — ol e gl e —— a g i

ok Aloats Sum,. paitemia g i 5 ool
‘)‘ BT el e S

el

“ligyime = 1] : 1 |t L o by

; . . printf("Enter valye o PADS) b il

: ARk / I-ECﬂnf{.*f..I‘n] ; 1 s T] (ke 1
: term = 1.0/n ;

= o -7!“1'*1; gount <= 0 Jooiin , onoaly Sovnbi

sum = sum + term ;
Eﬁul‘ll‘H‘ oml 5t aql

} anif
: printf("Sum = %f\n", sum) ;
Output

M

Enter value of n
99 »

Sum = 1.000001
Enter value of n

143
Sum = 0.999999

L AR
oating

g

We know that the suﬁ of n terms of 1/n ié 1. However, due to errors in fl
representation, the result is not always 1. .

[@id TYPE CONVERSIONS IN EXPRESSIONS

Implicit Type Conversion _ e
C permits mixing of constants and variables of different types in an expression. C aut
cally converts any intermediate values to the proper type so that the expression ¢
evaluated without loosing any significance. This automatic conversion is known as¥’

type conversion.

. —————— Operators and Expressions — Eﬁﬁ

B e Duri g evaluation it adheres to very strict rules of type conversion. If the operands are of
different types, the ‘lower’ type is automatically converted to the ‘higher' type before the

Roperation proceeds. The result is of the higher type. A typical type conversion process is

4
u
-
—
-
-

) - d

.. Joat

g ot 5 FEE. 4

_long * float
N

Sl Tt —

double

<

Ly A
Do

Mt Fig. 3.7 Process of implicit type conversion

34
¢ Given below is the sequence of rules that are applied while evaluating expressions.
4l short and char are automatically converted to int; then

5. 1: ifone of the operands is long double, the other will be converted to long double and

the result will be long double;

else, if one of the operands is double, the other will be converted to double and the

result will be double:

. else, if one of the operands is float, the other will be converted to float and the result

will be float:

- else, if one of the operands is unsigned long int, the other will be converted to un-

signed long int and the result will be unsigned long int;

- else, if one of the operands is long int and the other is unsigned int, then

(a) if unsigned int can be converted to long int, the unsigned int operand will be
converted as such and the result will be long int;

(b) else, both operands will be converted to unsigned long int and the result will be
unsigned long int;

else, if ane of the operands is long int, the other will be converted to long int and the

result will be long int; .

" 1. ‘else, if one of the operands is unsigned int, the other will be converted to unsigned

int and the result will be unsigned int.

B aiiantat LY T T LR PR R LN - TRt S T A S

Conversion Hierarchy

Note that, C uses the rule that, in all expressions except assignments,
any implicit type conversions are made from a lower size type to a
higher size type as shown below: {)

. - i ! ki
| .. "N ! |
L0 C/nlnversinn :

Hierarchy

Note that some versions of C automatically convert all floating-point operands to d
precision. ikl _ L
The final result of an expression is converted to the type of the variable on the fH"'__“
assignment sign before assigning the value to it. Hi?'w’évér. the following ché?l e
introduced during the final assignment. fiocmencs il il S
1. float to int causes truncation of the fractional part.

2. double to float causes rounding of digits. . i
3. long int to int causes dropping of the excess higher order bits. T

Explicit Conversion p .,_;

We have just discussed how C performs type conversion automatically. Howeveri SElil
are instances when we want to force’'a type conversion in a way that is different ITOfg
automatic conversion, Consider, for example, the calculation of ratio of females to malésg

town. 148

£ ae pa | ﬁq?nfmnl::ipumbafma!;ﬂnpmbc}'_ il il R i _ _.'.':g oy
Since female_number and male_number are declared as integers in the pro gral
decimal part of the result of the division would be lost and ratio would represent a8
figure. This problem can be solved by converting locally one of the variables to the 1% i
point as shown below: K- |
ratio = (float) female_number/male_number

e Operators and Expressions

{7

The operator (float) converts the female_number to floating point for the purpose of
ununn n!’ the expressmn Then using lhe rule of ﬂulﬂmﬂtlc conversion, the division is

The process of such a local conversion is known as explicit conversion or casting a value.
al form of a cast is:

(type-name)expression

: ._.-, type-name is one of the standard C data types. The expression may be a constant,
Hiable or an expression. Some examples of casts and their actions are shown in Table 3.7.

Table 3.7 Use of Casts

Action

8. x = (int) 7.5

4 a=(int) 21.3/(int)4.5
L ’b= (double)sum/n
oY = (int) (u+b)

L 2= (int)ath

i P =cos{{double)x)

1.5 is converted to integer by truncation.
Evaluated as 21/4 and the result would be 5.
Division is done in floating point mode.

The result of a+b is converted to integer.

ais converted to integer and then added to b.
Converts x to double before using it.

oy

Bling can be used to round-off a given value. Consider the following statement:
g x = (int) (y+0.5);

Ifyis 27.6, y+0.5 is 28.1 and on casting, the result becomes 28, the value that is
. ed to x. OFf course, the expression, being cast is not changed.

sum = $(1/0)
=)

Program

D —

B e T —

main()
float sum ;
int n;
sum = 0 ;
for(n=1;n< 10;

++n)

sum = sum + 1/(float)n ;
printf("%2d %6.4f\n", n, sum) ;

1.5000° R

1.8333" 1R e

20833 Hiv we et AN

2.2833

2.4500 '\ 1i e 64 ok 109
2.5929

2.7179

2.8290

2.9290

E Dutput ' (VgL
Bt o i e e e

S D 00~ O U £ L P

] et

2 Yoo TR]

[345]- OPERATOR PRECEDEHCE AND ASSOCIATIVITY. .

i‘l.-

As mentioned earlier aach operator, inC hm: a precedence associated with it. This precedenc
is used to determine how an expression involving more than one operator is evaluated. Theri
are distinct levels of precedence 'and an operator may belong to one of these’ levels 15
operators at the higher level of precedeuca are evaluated first. The operators of the &
precedence are evaluated either from Teft to nght or from ‘right to left’, depending on the
level. This is known as the asapcmﬁu:ty ‘property of an_operator. Table 3.8 provides. d
complete list of operators, their preoedem:e levels, and their rules of association. The groups®
are listed in the’order of decreasing precedence. Rank 1 indicates the highest precedenc
level and 15 the lowest. The list also includes those operators, which we have not yet beel
discussed, . :

It 1s wry important to. uuta narefully. tha order of precedence and associativity
operators. Consider the following cl:mdltmnal statement: ;

if(x=10+ lS&&y*‘: 10)

The precedence rules say that the addition operator has a l:ugher priority than the Iug:u
opernior (&&) and the relational operators (== and <). Therefore, the addition of 10 and 1
is executed first. This is equivalent to : .

if (x == 25 && y < 10) A

The next step is to determine whether x is equal to 25 and y is less than 10. If we assum
a value of 20 for x and 5 for y, then s :
x==25is FALSE (0)
y < 10is TRUE (1) b

Note that since the operator < enjoys a higher priority compared to ==, y < 10 is tested ﬁrl
and then x == 25 is tested. ’ _ -«
Finally we get: _ ' ; 3
if (FALSE && TRUE) 2

OQutput PR ¥ 2
ﬁ T 1.0000 .
2 1.5000 AT
3 1.8333° o e
42,0833 't o oa LR L
5 2.2833
6 2.4500 e il Gepd a TV O
7 2.5929
8 2.7179
9 2.8290
0

2.9290 R are W I

1.-3
2
.. R
L
[y

-~ v ‘t
|3115| OPERATOR PRECEDENCE AND Assocmrwm

As mentioned earlier aaeh operator,inC has a premdenne associated with it. This preced
is used to determine how ‘an expreéssion involving more than one operator is evaluated. Th 1 .-
are distinct levels of precedence 'and an opérator may belong to one of thesa'levels. 'aT.
operators at the higher level of precedence are evaluated first. The operators of the s
precedence are evaluated either from Teft to nght' or from ‘right to left’, depending on the
level, This is known as the asmcmhu:iy ‘property of an_operator. Table 3.8 provides
complete list of operators, their precedence levels, and their rules of association. The group:
are listed in the’order of decreasing precedence. Rank 1 indicates the highest precedencé:
level and 15 the lowest. The list also includes those operators, which we have not ;vet he 4:
discussed. .

It is wry important to nut.a ua.refully. t,ha ‘order of precedqnce and associativit
operators. Consider the following conditional statement:

if(x=10+ 15 && y<10)

The precedence rules say that the addition operator has a higher priority than the Iogl v '.
operator (&&) and the relational operators (== and <). Therefore, the addition of 10 and 13
is executed first. This is equivalent to : 4

if(x=25&&y<10)
The next step is to determine whether x is equal to 25 andy is less than 10. If we ass
a value of 20 for x and 5 for y, then
x==25is FALSE (0)
y <10is TRUE (1)
Note that since the operator < enjoys a higher priority compared to ==, y < 10 is tested
and then x == 25 is tested. X ; e
Finally we get: ‘ %
if (FALSE && TRUE) 1

iy,
o

~Because one of the conditions is FALSE, the complex condition is FALSE.

|
—ITB

In the case of &&, it is guaranteed that the second operand will not be evaluated if the
first is zero and in the case of | |, the second operand will not be evaluated if the first is non-

ZEro.

Table 3.8 Summary of C Operators

BBeaior - Devpion " Associativity T T Rkl
¢ () Function call Left to right I
[] Aray element reference
+ Unary plus
- Unary minus Right to left 2
-+ Increment
oS Decrement
! Logical negation
-~ Ones complement
" Pointer reference (indirection)
& Address
sizeof Size of an object
(type) Type cast (conversion)
v Multiplication Left to right 3
/ Division
% Modulus
+ Addition Left to right o+
= Subtraction
<< Lefi shift Left to right 5
>> Right shift
< Less than Left to right 6
< * Less than or equal to
> Greater than
e - Greater than or equal to
B Equality Left to right 7
2 Inequality
& Bitwise AND Left to right 8
g Bitwise XOR Left to right 9
| Bitwise OR Left to right 10
&& Logical AND Left to right 1
I Logical OR Left to right 12
(£ Conditional expression Right to left 13
- Assignment operators Right to left 14
f=f=%=
=_= &=
it o
T wuas
' Comma operator Left to right 15

* Precedence rules decides the order iﬁ which different operators are applied
o Associativity rule decitles the order in whu:h I"nultible ‘Bccurrences of the same
_ level operator are applied _

[3:16] HATHEHATICAL FUNCTIDHE T e |
Mathematical functions as cos, sqrt, log, etc. are frequently used in analysis of real-lifé
problems. Most of the C compilers support these basic math functions! However, there
systems that have a more comprehensive math library and one should consult the reference
manual to find out which functions are available. Table 3 9 hst.a sume sta.ndard math
fum:hnm

e I ..,# ft-‘,‘_*
 Table 39 Math functions -

—_— - g eed T ——— = —— — = s — — = = ———— e ——

Trigonometric

. acos(x) Arc cosine of X
asin(x) Arc sine of x
atan(x) ' Arc tangent of x
atan 2(x,y) Arc tangent of Xy
cos(x) Cosineofx
sin(x) Sine of x
tan(x) Tangentofx
Hyperbolic :
cosh(x) Hyperbolic cosine of x
sinh(x) Hyperbolic sine of x
tanh(x) : Hyperbolic unmof - P
Other functions
ceil(x) . x rounded up to the nearest integer
exp(x) e to the x power ()
fabs(x) : Absolute valueof x.
floor(x) x rounded down to the nearest integer
fmod(x.y) Remainder of x/'y
log(x) Natural logofx, x>0
log 1 0(x) Base 10 log of x, x>0
pow(x.y) x to the power y (x)
l'-'lﬂll]' Square root of x, x>=0

Note: 1. ‘x and y should be declared as double.
2. In trigonometric and hyperbolic functions, x and y are in mdmm
3. All the functions return a double.

W o P

4. C99 has added float and 1

= - " ¥]
pL L 2y G el g e
‘Perators and' Expressions ?5
--_'-'r_:--" [e e B = l

ong double versions of these fuctions.

o. C99 has added many more mathematical functions.
6. See the Appendix "C99 Features" for details.
As pointed out earlier in Chapter 1, to use any of these functions in a program, we should

include the line:

#include <math.h>

in the beginning of the program.

BOBRRDR B B BB BB B B

2> 22 B> B

Use decrement and increment operators carefully. Understand the differ-
ence between postfix and prefix operations before using them. oy
Add parentheses wherever you feel they would help to make the evalua-
tion order clear; oM g U :
Be aware of side effects produced by some expressions.)
Avoid any attempt to divide by zero. It is normally undefined. It will either
resu]tinafatalerrururi.ninmn'eﬂmsul 1

Do not forget a semicolon at the end of an expression. -
Understand clearly the precedence of operators in an expression. Use pa-

from right to left and which associate from left to right.

Do not use increment or decrement operators with any expression other
than a variable tdentifier.

carefully. Use casting where necessary.

The result of an expression is converted to the type of the variable on the
left of the assignment before assigning the value to it. Be careful about the
loss of information during the conversion,

All mathematical functions implement double type parameters and return
double type values.

It is an error if any space appears between the two symbols of the opera-
tors ==, |=, <= and >=,

1. Salesman’s Salary -
A computer manufacturing company has 'I;he following monthly compensation policy to thei

sales-persons: =

Minimum base salary . 1500.00
Bonus for every computer sold : 200.00
Commission on the total monthly sales . .: -2 per cent

Since the prices of compu rs are changmg,_thualas price of each computer is fixed ut 8|
beginning of every munt.h A program to mmputa nsalas-pemna gross salary is give

FIET 39 ,
i ~ Program b o iy HARS
it #define BASE SHLAH 1500.00
‘#define BONUS_RATE 200,00 ..
fdefine u:u-l-ussm;l 0.02 -
main() : EaSriih
{

int quantity % :

- float gross_ sa‘lary. price ; e
float bonus, commission ;
printf(*Input number sold and price\n") ;
scanf("%d %f", Squantity, &price) ;
bonus = BONUS_RATE * quantity ;
commission = COMMISSION * quantity * price ;
gross_salary = BASE_SALARY + bonus + commission ;
printf(*\n")} L1
printf("Bonus = %6.2f\n", bonus) ; : |
printf("Commission = %6.2f\n", commission) ;)
printf{"Ernss salarr = %6.2f\n", gross_ ulary} :

}

Output
Input number sold and price
5 20450.00
Bonus = 1000.00
Commission = 2045.00

Gross salary = 4545.00

Given the base salary, bonus, nnd commission rate, the mputs necessary to ca.lcuh
gross salary are, the price of each computer and the number sold during the month. i
The gross salary is given by the equation: .

*+(quantity * Price) * commission rate

2. Solution of the quadratic equation

An equation of the form
ax’ +bx +c=0
is known as the quadratic equation. The values of x that satisfy the equation are known as

the roots of the equation. A quadratic equation has two roots which are given by the following
two formulae:

_ —b+sqrt(b? - dac)
root | %
~b-sqrt(b? - 4ac)

2a

h;nugranutu:nudunhetheneruohsi;ghﬂulhmlﬁg.SJHl’rheFungranrnapuﬁﬁsthEtmmrto
inputthn-mluesofa,banduanduut]mtsmtlmdmtz.

root 2=

Program
finclude <math.h>
main()

float a, b, c, discriminant,
rootl, root2:
printf("Input values of a, b, and c\n*):
scanf("5f %f %", %a, &b, &¢):
discriminant = b*b - 4*3*¢ :
if(discriminant < 0)
printf(*\n\nROOTS ARE IMAGINARY\n");
else
{
rootl = {-h + sqrt discr1ninant;;j Z.D'a};
root2 = (-b - sqrt(discriminant { 2.0%a);
printf(*\n\nRootl = %5.2f\n\nRoot? = ¥5.2f\n",
rootl,root2);

}
Output
Input values of a, b, and ¢
24 -16
Rootl = 2.00
Root2 = -4,00
Input values of a, b, and ¢
123

ROOTS ARE IMAGINARY

¥ e ey ey

|
Tﬂl

and the program outputs an nppmpnata message.

.nﬂaw Questions

3.1 State whether the following statements are true or false.
(a) All arithmetic operators have the same level of precedence.
(b) The modulus operat.ur % can be uged only with integers.
(c) The operators <=, >= and != all enjoy the same level of priority. b
(d) During modulo flwlnmn the sign of the reault is positive, if both the operand
of the same sign.
(e) In C,if a data item is zero, it is considered false.
(f) The expression /(x<=y) is same as the expression x>y.
(g) A unary expression consists of only one operand with no operators. ;
.. (h) : Associativity is usad to decide which of several dtﬂ'&re.nt axprmuna is evalt
first. i T
(i) An expression statamunt u termmatzd with a pennd -
(j) During the evaluation of mixed expressions, an u'nphmt cast is generated|
matically.
(k) An explicit cast can be used to change the expression.
(1) Parentheses can be used to change the order of evaluation expressions.
3.2 Fill in the blanks with appropriate words.
(a) The expression containing all the integer operands is called
(b) The operator cannot be used with real operands.
(¢) C supports as many as relational operators. :
(d) An expression that combines two or more relational expressions is termedis
expression. -4
(@)’ The operator returns the number of bytes the operand nccupxﬂ. "
() The order of evaluation can be changed by using in an expression.
(g) The use of on a variable can change its type in the memory.
(h) ____ s used to determine the order in which different operators in an expit
sion are evaluated.
3.3 Given the statement
inta=10,b=20,¢;
determine whether each of the following statements are true or false.
(a) The statement a = + 10, is valid.
(b) The expression a + 4/6 * 6/2 evaluates to 11.
(¢) The expression b + 3/2 * 2/3 evaluates to 20.
(d) The statement a + = b; gives the values 30 to a and 20 to b,
(@) The statement ++a++; gives the value 12 to a
(f) The statement a = 1/b; assigns the value 0.5 to a o
3.4 Declared a as int and b as float, state whether the following statements are tr
false.

expressi

Operators and Expressions —————— |79

(a) The statement a = /3 + 1/3 + 1/3; assigns the value 1 to a.

(b) The statement b = 1.0/3.0 + 1.0/3.0 + 1.0/3.0; assigns a value 1.0 to b.
(¢) The statement b = 1.0/3.0 * 3.0 gives a value 1.0 to b

(d) The statement b = 1.0/3.0 + 2.0/3.0 assigns a value 1.0 to b.

- (e) The statement a = 15/10.0 + 3/2; assigns a value 3 to a.

£ 3.5 Which of the following expressions are true?

b () 5+ 5>=10)

{b} B+5==10 II 1+3==

() 5>10 || 10<20&& 3 <5

(d) 10!=15 && '(10<20) | | 15> 30

3.6 Which of the following arithmetic expressions are valid ? If valid, give the value of the
expression; otherwise give reason.

(a) 25/3 % 2 (e) -14% 3 o
(b) +9/4 + 5 (0 1525 +-~5.0
(c) 756%3 (g) (6/3)*3+5%3

d 14%3+7%2 th) 21 % (intM.5

3.7 Write C assignment statements to evaluate the following equations:
£ (a) Area=xr’ +2 nrh

2m;m,
m. +‘m= i

(b) Torque =

(¢) Side = ya?+b?-2ab cos(x)

i)
(d) Energy = mass | acceleration x height + (velocity)”

t 3.8 Identify unnecessary parentheses in the following arithmetic expressions,

(@) ((x~(y/5)+2)%8) + 25

(b) ((x=y) * pleq

(c) (m*n) + (~x/y)

g (D) xA3%y)

* 3.9 Find errors, if any, in the following assignment statements and rectify them.

(@) x = y = 2 = 0.5, 2.0, =5.75;

(b) m = 443 * 5;

(€) y = sqre(100);

(d) p * = x/y;

() s = /5,

M a = pas —c*2

BELfﬁrmine the value of each of the following logical expressions ifa =5, b= 10 and
@) asb&&a<ec

(b) a<h&&a>ec '
(e) A==g¢ I ' b>a

D b>15&&c<0||a>0

(&) (/2.0 == 0.0 && W2.0 = 0.0) Il e<0,0

£ 3.10

|
80}

9.11 What is the output of the following program?
main () '

{
char x;
int y;
x = 100;
y = 125;
printf (*%c\n", x) ;
printf (“sc\n", y)
\ printfi{'td\n v %) 3 |

3.12 Find the output of thq/fnllnwmg program?
main () /

int x = 100;
printf&?tdfn , 10 + :++;
printf("%d/n®, 10+ +x

} ;
3.13 ﬁ?hatis]ninmeﬂlnrthn:&ﬂhnuhug;uugrnmu?
‘main

{
int x=5,y=10, z = 10 ;
Sl et
printf("sd",x) ;

}

3.14 What is the output of the following program?
main ()

{
int x = 100, y = 200;
printf ("%d", (x > y}? % & ¥)3
3.15 What is the output of the following program?

main ()
{
unsigned x = 1 ;
signed char y = -1 ;
if(x > y)
printf(* x > y");
else
printf("x<= y*) ;
}

Did you expect this output? Explain.

_;___ ———————— Operators and Expressions —— 151

i 3.16 What is the output of the following program? Explain the output.
' main ()

{

int x = 10 ;

if(x = 20) printf("TRUE") ;

else printf("FALSE") :
}
. 13.17 What is the error in each of the following statements?
(a) if(m==1&n!=0)

printfi“OK");
(b) if(x = <5)
printf ("Jump®);

3.18 What is the error, if any, in the following segment?
: int x = 10 ;
float y = 4.25 ;
X = yix ;
3.19 What is printed when the following is executed?
for (m = 0; m <3; ++m)
v printf(*%d/n", (m%2) ? m: m+2):
9.20 What is the output of the following segment when executed?
: intm=-14, n = 3;
printf(“%d\n", m/n * 10) ;
N = -n;
printf(*%d\n", m/n * 10):

Pgramming Exercises

3.1 Given the values of the variables x, y and z, write a program to rotate their values
] 32 such that x has the value of v, ¥ has the value of z, and z has the value of x.

Write a program that reads a floating-point number and then displays the right-most
. digit of the integral part of the number.
£ 93 Modify the above program to display the two right-most digits of the integral part of
number,
£ 94 Write a program that will obtain the length and width of a rectangle from the user and
b . . Ompute its area and perimeter.

35 Given an integer number, write a program that displays the number as follows:

Firstline . 4 digits
Sﬂl?md line : all except first digit
Third line all except first two digits

Lastline . The last digit

82 |____. — =

For example, the number 5678 will be: displ'a}'ed as:

b6T8
678
78

8

3.6 The straight-line method of computing the yearl:.r deprmauun nf the value of an’ * 5

is given by . . o
Purchasa P‘ril:a Sa]vagu anun cor ¥ Sl 3
i Years of Service ! Ny
Write a program to dete ng;nma the salvage value of an item wheu the purchm

Depreciation =

years of service, and the/annual depreciation are given. B
3.7 Write a program that read a real number from the keyboard and print the fol
ing output in one line:

Smallest integer The given Largest integer

not less than ~ ' number not greater than ; -' ;_.t

the number the number s
3.8 The total distance travelled by a vefm:le in ¢ secunds is gwen by
' distance = ut + (ar’)/2

Where u is the initial, velocity (metres per second), a is the acceleration (me !
second %). Write a program to evaluate the distance travelled at regular interve
time, given the values of u and a. The program should provide the flexibility toif
user to select his own time intervals and repeat the calculations for ds,ﬂ‘arent vai
u and a. :
3.9 In inventory management, the Economic Order lennt_v fur a single item is gi

EDQ=J 2 x demand rate x setup costs i
: . . _\ holding cost per item perunit time = - . "
and the u_ptimnl Tima Between Orders '
TBD ;! 2 x'setup costs -
dmﬂratexhnlﬂxﬁgmstpéntempu‘umthm

~ Write a program to compute EOQ and ‘TBO, given demand rate (items per u.nﬂ
~ setup costs (per order} and the holding cost (per item per unit time). ..
3.10 For a certain electrical circuit with an inductance L and resistance R, the dam

natural frequency is given by
Frnﬁumcyln L B R’
LC 4C?

It is desired to study the variation of this frequency with C (capacitance).. Wi
program to calculate the frequency for different values of C starting from 0.01 to 03
steps of 0.01. ;4

- ——— Operators and Expressions —————— —{ 83
gl

| ,11 Write a program to read a four digit integer and print the sum of its digits.

8. Hint: Use / and % operators,

. u., Wnite a program to print the size of various data types in C

¥.9.13 Given three values, write a program to read three values

Tt the largest of them without using if statement.

23,14 Write a program to read two integer values m and n and to decide

% m is a multiple of n.

88315 Write a program to read three values using scanf statement and print the following
~ results:

(a) Sum of the values

(b) Average of the three values

£ (c) Largest of the three

¥ (d) Smallest of the three

216 The cost of one type of mobile service is Rs. 250 plus Rs. 1.25 for each call made over

and above 100 calls. Write a program to read customer codes and calls made and print
the bill for each customer.

17 Write a program to print a table of sin and cos functions for the interval from 0 to 180
£ degrees in increments of 15 as shown below.

from keyboard and print out

and print whether

T

x (degrees) sim (x) cos (t)
L
15
- -
B 180

%18 Write a program to compute the values of square-roots and squares of the numbers 0
10 100 in steps 10 and print the outputi in a tabular form as shown below.

Number Square-root Square
_ 0 0 0
i 100 10 1000%)

) Write a program that determines whether a given integer is odd or even and displays
" the number and description on the same line.

-._r'. M ' E . & ¥ .
rite a program to illustrate the use of cast operator 1n a real life situation.

