Constants,Variables,
and Data Types

|23 INTRODUCTION

A programming language is designed to help process certain kinds of data consisting of
numbers, characters and strings and to provide useful output known as information. The
task of processing of data is accomplished by executing a sequence of precise instructions
called a program. These instructions are formed using certain symbols and words according
to some rigid rules known as syntax rules (or grammar). Every program instruction must
confirm precisely to the syntax rules of the language.

Like any other language, C has its own vocabulary and grammar. In this chapter, we will
discuss the concepts of constants and variables and their types as they relate to C program-
ming language.

22| CHARACTER SET

The characters that can be used to form words, numbers and expressions depend upon the

computer on which the program is run. However, a subset of characters is available that can

used on most personal, micro, mini and mainframe computers. The characters in C are
ped into the following categories:

L Letters

2. Digits

3. Special characters

4. White spaces

The entire character set is given in Table 2.1.

The compiler ignores white spaces unless they are a part of a string constant. White spaces

ﬁft?; used to separate words, but are prohibited between the characters of keywords and
Otihers.

24|
Trigraph Characters

Many non-English keyboards do not support all the characters mentioned in Table 2.1. ANSI
C introduces the concept of “trigraph” sequences to provide a way to enter certain characters
that are not available on some keyboards. Each trigraph sequence consists of three charac-
ters (two question marks followed by another character) as shown in Table 2.2.
For example, if a keyboard does not support square brackets, we can still use them in a

program using the trigraphs ?%(q{nd 7). - o
N "-i-'iii' ;';Iglr 2 § Shargoee Ta¥

: n g ; &' !
Lowercasea.....2 l Pj“{ i \‘1 g AN, P oAl
Special Characters
, comma & ampersand
. period ~ caret
: semicolon . * asterisk
: colon ~ minus sign
? question mark +pluSSign poe 00 gy
* apostrophe < opening angle bracket
“ jon mark (or less than sign)
! exclamation mark b V'R > closing angle bracket
| vertical bar : (or'greateér than sign)
/slash e (left parenthesis
\ backslash) right parenthesis
~ tilde [left bracket
_ under score -~] right bracket
$ dollar sign : ; | left brace
- % percent sign | , } right brace
number sign
White Spaces
Blank space
Horizontal tab o 3 ctpy ¢
New line

Form feed

B —

lzﬁ

[23] C TOKENS

In a passage of text, individual words and punctuation marks are called tokens. Similarly, in
a C program the smallest individual units are known as C tokens. C has six types of tokens
as shown in Fig. 2.1. C programs ‘are written using these tokens and the syntax of the lan-

guage.

Fe G g

KEYWORDS AND IDENTIFIERS

Every C word is classified as either a keyword or an identifier. All keywords have fixed
meanings and these meanings cannot be changed. Keywords serve as basic building blocks
for program statements. The list of all keywords of ANSI C are listed in Table 2.3. All key-
words must be written in lowercase. Some compilers may use additional keywords that must
be identified from the C manual.

he Appendix "C9 Features™. = -

L | o e R 3 e N S T
X3t C99 adds some more kevwords. See

Sl ke Sr ety Sl = % T S, LT P TR T SR R

€99 adds som

:]
g L
\

7

L

register typedef

union
shon unsigned .
signed void

default sizeof volatile
do if siatic ' while

Identifiers refer to the names of variables, functions and arrays. These are user-defined
names and consist of a sequence of letters and digits, with a letter as a first character. Both

1. First character must be an alphabet (or underscore).
2, Must consist of only letters, digits or underscore.
3. Only first 31 characters are significant.
4
5

. Cannot use a keyword,
. Must not contain white space.

il

|25] CONSTANTS

Constants in C refer to fixed values that do not change during the execution of a program.
supports several types of constants as illustrated in Fig. 2.2.

e S i
e
ie By 3

A TS gl m kL iy
B A 1 e g T
e Ay . 5
PP LA o L A | s

Integer tomitanu

An integer constant refers to a sequence of digits. There are three types of integers,
decimal integer, octal integer and hexadecimal integer. :
Decimal integers consist of a set of digits, 0 through 9, preceded by an optional — or + sig
Valid examples of decimal integer constants are:
123 =321 0 654321 +78 .
Embedded spaces, commas, and non-digit characters are not permitted between digit
For example, '

15750 20,000 $1000
are illegal numbers.

— Constants, Variables, and Data Types _I 27

Note: ANSI C supports unary plus which was not defined earlier.

An octal integer constant consists of any combination of digits from the set 0 through 7,
with a leading 0. Some examples of octal integer are:

037 0 0435 0551

A sequence of digits preceded by Ox or 0X is considered as hexadecimal integer. They may
also include alphabets A through F or a through f. The letter A through F represent the
numbers 10 through 15. Following are the examples of valid hex integers:

0X2 0x9F 0Xbed Ox

We rarely use octal and hexadecimal numbers in programming,

The largest integer value that can be stored is machine-dependent. It is 32767 on 16-bit
machines and 2,147,483,647 on 32-bit machines. It is also possible to store larger integer

constants on these machines by appending qualifiers such as U,L and UL to the constants,
Examples:

56789U or 5678%u (unsigned integer)
987612347UL or 98761234ul (unsigned long integer)
9876543L or 98765431 (long integer)

The concept of unsigned and long integers are discussed in detail in Section 2.7.

[EXample 2.1] Representation of integer constants on a 16-bit computer,

The program in Fig.2.3 illustrates the use of integer constants on a 16-bit machine. The
output in Fig. 2.3 shows that the integer values larger than 32767 are not properly stored on
a 16-bit machine. However, when they are qualified as long integer (by appending L), the
values are correctly stored.

Program
main()

printf("Integer values\n\n");
printf(*%d %d %d\n", 32767,32767+1,32767+10) ;
printf(*\n");
printf("Long integer values\n\n");
printf(*%id 51d %1d\n*, 32767L,32767L+1L,32767L+10L);

)

Output

Integer values

32767 -32768 -32759

Long integer values

32767 32768 32717

e et o e P L o el g e T T o T "!"I 1k T R L i

Fig. 2.3 Repmmum ufht!ger:om on l&-hilmuxhhe
Real Constants

1'_“%'&1' numbers are inadequate to represent quantities that vary continuously, such as

nces, heights, temperatures, prices, and so on, These quantities are represented by
fumbers containing fractional parts like 17.548. Such numbers are called real (or floating
point) constants. Further examples of real constants are:

2| oo ANLE
0,0083 -0.75 435.36 42470 _ - ’

Thesé numbers are shown in decimal notation, having a whole number followed b;
decimal point and the fractional part. It is possible to omit digits before the decimal point
digits after the decimal point. That is, :

| “2i5. 95 -7 +5°

ny : {
are all valid real numbers. 13 i R ; b ol

A ¢val number may also be expressed in exponential (or scientific) notation. For exam
the value 215.65 may be written as 2.1565e2 in exponential notation. e2 means multipl

10°. The general form:is: " - : fry skl ngn e ag st
ot gt T o i e G T

s vl Taj mAnfisss N |
The mantissa is either a real number expressed in decimal notation or an integer. The &
nent is an integer number with an optional plus or minus. sign, The letter e separating
mantissa dnd the exponent can be written in either lowercase or uppercase. Since the e
nent causes the decimal point to “float”, this notation is said to represent a real numbe
floating point form. Examples of legal floating-point constants are:

0.65¢4 12e-2..1.5e+5 3.18E3 - -1.2E-1 ; i

Embedded white space is not allowed. .] :

Exponential notation is useful for representing numbers that are either very large or
small in magnitude. For example, 7500000000 may be written as 7.5E9 or 75E8, Similar
0.000000368 is eéquivalent to —3.68E-7.

Floating-point constants are normally represented as double-precision quantities. H
ever, the suffixes f or F may be used to force single-precision and | or L to extend do
precision further,

Some examples of valid and invalid numeric constants are given in Table 2.4,

Table 2.4 Examples of Numeric Constants

h@‘m&iﬁ#%ﬂﬁm&ﬁféﬁ;MG3!‘1&1" pabily $ﬁ’ﬂﬁw L o e
Yes

6983541 Represents long integer
25,000 No Comma is not allowed
+5.0E3 Yes (ANSI C supports unary plus)
3.5¢-5 Yes

T.1ed No No white space is permitted
-4 5e-2 Yes

1L.5SE+2.5 No Exponent must be an integer
$255 No $ symbol is not permitted
0X78 - . Yo' ey Hexadecimal integer

Single Character Constants

A single character constant (or simply character constant) contains a single characta
closed within a pair of single quote marks. Example of character constants are:

tii 1x1 l;' i ¥

— Constants, Variables, and Data Types ——|29

i

Note that the character constant 5’ is not the same as the number 5. The last constant is

‘blank space.

Character constants have integer values known as ASCII values. For example, the state-
nent

printf("sd”, 'a');

sould print the number 97, the ASCII value of the letter a. Similarly, the statement
_ printf("%c®, "97°);
would output the letter “a’. ASCII values for all characters are given in Appendix IL.
. Since each character constant represents an integer value, it is also possible to perform
rithmetic operations on character constants. They are discussed in Chapter 8.

String Constants

A string constant is a sequence of characters enclosed in double quotes. The characters may
be letters, numbers, special characters and blank space. Examples are:

: “Hello!™ “1987" “WELL DONE" “2..1" o s % M 4

["_ Remember that a character constant (e.g., X) is not equivalent to the single character
string constant (e.g., “X°). Further, a single character string constant does not have an
equivalent integer value while a character constant has an integer value. Character strings
are often used in programs to build meaningful programs. Manipulation of character strings
ite considered in detail in Chapter 8.

B

yackslash Character Constants
C supports some special backslash character constants that are used in output functions. For
example, the symbol ‘“\n’ stands for newline character. A list of such backslash character

constants is given in Table 92 5. Note that each one of them represents one character, al-
aracters. These characters combinations are known as escape

though they consist of two ch
sequences.
Table 2.5 Backslash Character Constonts ~

B Constani Meaning

‘“a' audible alert (bell)

“b* back space

\r form feed

"' new line

' carriage retum

' horizontal tab

W' ventical tab

"W single quote

" double quote

\r question mark

“W bll:k'!lll‘lh

“Ww0* null

30} AT quuﬁﬁimwvlgg
VARIABLES

A variable is a data name that may be used to store a data value. Unlike constants t
remain unchanged during the execution of a program, a variable may take different val
at different times during execution. In Chapter 1, we used several variables. For instan
we used the variable amount in Sample Program 3 to store the value of money at the end
each vear (after adding the interest earned during that year).

A variable name can be cllmsen by the programmer in a meaningful way so as to reflect
function or nature in the program. Some examples of such names are:

Average

height /
Total _ .
Counter_1
claas_stmngth

As marmnnud earlier, variable names may consist of letters, digits, and the undersco
character, subject to the following conditions:
1., They must begin with a letter, Some systems permit underscore as the first nhnrac
2. ANSI standard recognizes a length of 31 characters. However, length should not
normally more than eight characters, since only the first eight characters are trea
as significant by many compilers. (In C99, at least 63 characters are significant.)
3. Uppercase and lowercase are significant. That is, the varible Total is not the same
total or TOTAL.
4. It should not be a keyword.
5. White space is not allowed.
Some examples of valid variable names are:

John Value T _raise
Delhi x1 ph_value
mark suml distance
Invalid examples include:
123 (aren) !
% 25th '.i-

Further examples of variable names and their correctness are given in Table 2.6.

Table 2.6 Examples of Yariable Names

First tag Valid |
char Not valid char is a keyword

Price$ Not valid Dollar sign is illegal

group one Not valid Blank space is not permitted

average number Valid First eight characters are significant

int_type Valid Keyword may be part of a name

e e e Congtants, Variables, and Data Types ————

—] 3

If only the first eight characters are recognized by a compiler, then the two names

average_height
average_weight

mean the same thing to the computer. Such names can be rewritten as
avg_height and avg weight

ar
ht_average and wt_average
without changing their meanings.

27| DATA TYPES

C language is rich in its data types. Storage representations and machine instructions to
handle constants differ from machine to machine. The variety of data types available allow

the programmer to select the type appropriate to the needs of the application as well as the
machine,

ANSI C supports three classes of data types:
1. Primary (or fundamental) data types

2. Derived data types

3. User-defined data types

The primary data types and their extensions are discussed in this section. The user-de-
fined data types are defined in the next section while the derived data types such as arrays,
functions, structures and pointers are discussed as and when they are encountered.

All C compilers support five fundamental data types, namely integer (int), character
(char), floating point (float), double-precision floating point (double) and void. Many of
them also offer extended data types such as long int and long double, Various data types
and the terminology used to describe them are given in Fig. 2.4. The range of the basic four
types are given in Table 2.7. We discuss briefly each one of them in this section.

'C99 adds three more data types, namely _Bool, _Complex, and _Imaginary. See the
| SET. Appendix "099 Features”

e e —————— e

— e
L] y 408 5 S a0 Bk Y -
e ol values

..... 4 L

char ' ~12810 127

jnt 4 N Tt .+ =32,7681032,767 .

ot float -, .5 P 4 3.4e-38103 4eted8

.. double . 1.7e-308 to 1.7e+308
IngegErTypes_ !

Integers are whole numbers with a range of values supported by a particular machine. Gen
erally, integers occupy one word of storage, and since the word sizes of machines vary (typ
cally, 16 or 32 bits) the size of an integer that can be stored depends on the computer, If wi
use a 16 bit word length, the size of the integer value is limited to the range -32768 to +3276
(that is, -2'" to +2'°~1). A signed integer uses one bit for sign and 15 bits for the magnituds
of the number. Similarly, a 32 bit word length can store an integer ranging from ;
2,147,483,648 to 2,147,483,647. - ;
In order to provide some control over the range of numbers and storage space, C has thret
classes of integer storage, namely short int, int, and long int, in both signed and un
signed forms. ANSI C defines these types so that they can be organized from the smallest
the largest, as shown in Fig. 2.5. For example, short int represents fairly small integes
values and requires half the amount of storage as a regular int number uses. Unlike signe(

Constants, Variables, and Data Types —’ 33

integers, unsigned integers use all the bits for the magnitude of the number and are always
positive. Therefore, for a 16 bit machine, the range of unsigned integer numbers will be from

0 to 65,535.
l short int —L
l ~int j
[long int ' i k
L4 Fig. 2.5 - Integer types.

~ ;, Wedeclare long and unsigned integers to increase the range of values. The use of quali-

. fier signed on integers is optional because the default declaration assumes a signed number.
Table 2.8 shows all the allowed combinations of basic types and qualifiers and their size and
range on a 16-bit machine.

mﬂﬁ allows long long integer types. See the Appendix “C99 Features”,]

o Table 2.8 Size and Range of Data Types on a | 6-bit Machine
ﬁe Size (bits) Range

char or signed char 8 ~12810 127

unsigned char 8 Oto 255

int or signed int 16 -32,768 10 32,767

unsigned int 16 0 to 65535

short int or

signed short int 8 ~-12810 127

unsigned short int 8 Dto 255

long int or

signed long int 32 -2,147,483,648 10 2,147,483 647

unsigne long int 32 0104,294,967,295

float 32 34E -3810 3.4E + 38

double % 1.L7TE-30810 1.7E + 308
__lnngdnuhtc 80 3J4E-4932t01.1E + 4932
Floating Point Types

Flﬂfiting point (or real) numbers are stored in 32 bits (on all 16 bit and 32 bit machines), with
6 digits of precision. Floating point numbers are defined in C by the keyword float. When
the accuracy provided by a float number is not sufficient, the type double can be used to
define the number. A double data type number uses 64 bits giving a precision of 14 digits.
, ese are known as double precision numbers. Remember that double type represents the
- Same data type that float represents, but with a greater precision. To extend the precision
- lurther, we may use long double which uses 80 bits. The relationship among floating types
18 llustrated in Fig. 2.6.

Void Types

1t fl o] ,
The void type has no values. This is ustally used to spécify the type of functions. The type{
a function is uqild to be void hen it does not return any value to the calling function. It ¢d
ro

also play the role of a generi¢ type, meaning that it can represent any of the other standaf
w!. L "' Aepety ey T R T .I...'I".‘ T LR L] j y) F -',-':u i '_I
Character Types :

A single character cdn be defined as a character(char) type dhta."clihractaré”hralﬁéu 1}
stored in 8 bits (one byte) of internal storage. The qualifier signed or unsigned may
explicitly applied to char. While unsigned ¢hars have values betweén 0 and 265, signét
chars have values from -128 to 127. "]

2.8] DECLARATION OF VARIABLES

does two things:
1. It tells the compiler what the variable name is.
9. It specifies what type of data the variable will hold.
The declaration of variables must be done before they are used in the program.

Primary Type Declaration

A variable can be used to store a value of any data type. That is, the name has nothing to d
with its type. The syntax for declaring a variable is as follows:
'l|11.I..Tf‘I- b i T A ¢ 3 !

I : i
v1, v2, ...vn are the names of variables. Variables are separated by commas. A declaratio
statement must end with a semicolon. For example, valid declarations are: ‘!
~ 4nt count; : O

it T int number, total; s

; w7y .double ratio; - I‘{

int and double are the keywords to represent integer type and real type data values reapéd
tively. Table 2.9 shows various data types and their keyword equivalents,

e

r e — Constants, Variables, and Data Types —™W—————— |35

Table 2.9 Data Types and Their Keywords

3 %F;-_' Data type Keyword equivalent
Character char
Unsigned character unsigned char
Signed character signed char
Signed imeger signed int (or int)
Signed short integer signed short int
(or short int or short)
Signed long integer signed long int
(or long int or long)
Unsigned integer unsigned int (or unsigned)
Unsigned short integer unsigned short int
(or unsigned short)
Unsigned long integer unsigned long int
(or unsigned long)
Floating point float
Double-precision
floating point double
Extended double-precision
floating point long double

| The program segment given in Fig. 2.7 illustrates declaration of variables. main() is the
\beginning of the program. The opening brace [signals the execution of the program. Decla-
ration of variables is usually done immediately after the opening brace of the program. The
variables can also be declared outside (either before or after) the main function. The impor-
tance of place of declaration will be dealt in detail later while discussing functions.

Note: C99 permits declaration of variables at any point within a function or block, prior to their use.

main() /*..... cosoPrOgram Name.....cceoevninovuniaciies wf

{
] A PRI e +oDeclaration....cieeeeisess R "/
float Xe ¥
int code:

short int count;
long int amount ;

double deviation;
unsigned n;
char [+
J0 i m e e COmpUtAtion. vvvrrvnenrrrrrrnenes ve
| O sse..Program ends....... L S e e *f

Fig. 2.7 Declaration of variables

‘ - — Programming I ANsI € —

When an adjective (qualifier) short, long, or unsigned is used without a basic data type
specifier, C compilers treat the data type as an int. If we want to declare a character variable|
as unsigned, then we must do so using both the terms like unsigned char, |

e e T '
- -r|-|T'_ Wpbs gl
SRE S Lyl LA

et o (T i

Integer constants, by default; represent int type data, We can override this default
by specifying unsigned or long after the number (by appending U or L) as shown
below: LRI

Literal ;1,. . Type Value t
L I 11 :
222 S int =222 i
45678U ., . unsigned int 45,678 '
~-56789L long int -56,789
987654UL unsigned long int 9,87,654
1 T /
Similarly, floating point constants, by default represent :Im.fhl'_e type data. If we ;
want the resulting data type to be float or long double, we must append the letter f
or F to the number for float and letter | or L for long double as shown below:
Literal e R Value
0. . - double) 0.0
.0 N ~ double 0.0
12.0 A "double’ “ 12.0 .
: 1.234 v double 1.234 C
15.-,;;#;14 ' -1.2f ' . float -1.2 B
o & I 1.23456789L long double 1.23456789 {
-.t 1 :-.-:;:.I;.';u:'lhl-hl-.i,ﬁ -',:FI ." _.!. --“. :;i":klp‘l:';:l el “,:'Iu-h A S, LY i |- il
3 'F'%E.zﬂﬁ. ¥y for IR ‘-'sn-!f‘?j:&n“‘?ﬁ?ﬂ i ' ‘Wﬁ’i Wi
s A A ‘i VLA g i) ! & i 8
User-Defined Type Declaration b
C supports a feature known as “type definition” that allows users to define an identifier thal
would represent an existing data type. The user-defined data type identifier can later b
used to declare variables . It takes the general form: E
typedef fypé identifier;
T mEHER e C e R P bl g e b o |
Where type refers to an existing data type and “identifier” refers to the “new” name given ti) "F
the data type. The existing data type may belong to any class of type, including the user :

defined ones, Remember that the new type is ‘new’ only in name, but not the data typd
typedef cannot create a new type. Some examples of type definition are: |
typedef int units; :

typedef float marks; |

Here, units symbolizes int and marks symbolizes float, They can be later used to declari
variables as follows: !
units batchl, batch2; |

marks namel[50], name?[50]; '

e 1 i

|87

batchl and batch2 are inclared as int variable and name1[50] and name2[50] are declared as
50 element floating point array variables. The main advantage of typedef is that we can
create meaningful data type names for increasing the readability of the program.,

Another user-defined data type is enumerated data type provided by ANSI standard. It is
defined as follows:

v i okt e T .-_--1|
wyn el Db e
il r! |

":fjr::f.':‘-'-;-':-'l-;."':,:,-':r"-.-t‘.:-r-:--t' datdg LInsTe
data type which can be used to declare vari-
ables that can have one of the values enclosed within the braces (known as enumeration
constants). After this definition, we can declare variables to be of this ‘new’ type as below:
enum identifier vl1, v2, ... vn; il sl

The enumerated variables v1, v2, ... vn can only have one of the values valuel, value2, ...

valuen, The assignments of the following types are valid: | '
:] vl = valued;
y V5 = valuel; :

h example:

‘enum day (Monday,Tuesday, ... Sunday)};
enum day week st, week end;
' week_st = Monday;
week end = Friday;
if(week st == Tuesday)
week end = Saturday;
. The compiler automatically assigns integer digits beginning with 0 to all the enumeration
constants. That is, the enumeration constant valuel is assigned 0, value2 is assigned 1, and
s0 on. However, the automatic assignments can be overridden by assigning values explicitly
to the enumeration constants. For example:
enum day (Monday = 1, Tuesday, ... Sunday)};"
Here, the constant Monday is assigned the value of 1, The remaining constants nre as-
signed values that increase successively by 1,
' The définition and declaration of enumerated variables can be combined in one statement.

Example:

enum day {Monday, ... Sunday) week st, week_end;

28] DECLARATION OF STORAGE CLASS

Variables in C can have not only data type but also storage class that provides information
About their location and visibility. The storage class decides the portion of the program
Within which the variables are recognized. Consider the following example:

/* Example of storage classes */
int m;

main()
{

int i;
float balance;

38 }— —— . Programming in ANSIC.
} i’;ll:lul:tiunlij;
functionl()

int i;
float sum;

}

‘The variable m which has been declared before the main is called global variable.]
be used in all the functions in the program. It need not be declared in other functio
global variable is also known as an external variable, _

The variables i, balance and sum are called local variables because they are dec
inside a function. Local variables are visible and meaningful only inside the functic
which they are declared. They are not known to other functions. Note that the variable
been declared in both the functions. Any change in the value of i in one function dot
affect its value in the other.

C provides a variety of storage class specifiers that can be used to declare explicit
scope. and lifetime of variables. The concepts of scope and lifetime are important ol
multifunction and multiple file programs and therefore the storage classes are conside
detail later when functions are discussed. For now, remember that there are four s
class specifiers (auto, register, static, and extern) whose meanings are given in
2.10.

The storage class is another qualifier (like long or unsigned) that can be adde
variable declaration as shown below: '

auto int count;
register char ch;
static int x;
extern long total;

Static and external (extern) variables are automatically initialized to zero. Aut
(auto) variables contain undefined values (known as ‘garbage’) unless they are init
explicitly.

Table 2.10 Storage Classes and Their Meaning

aulp L iscsl varmble known osly o the fancten in w e

wtatic Local varsdsle which exies sral retains s valoe cven alter the comired o rarale
the calling fencton

vlerm Ciota] varishis knowe %0 all furcsem n the Tide

register Leocal variahie whach & stored m the registes

[210) ASSIGNING VALUES TO VARIABLES

Varinbles sre created for use in program statements such as,

- Constants; Variables, and Data Types | 39

value = amount + inrate * amount :
while (year <= PERIOD)
{

"R oE

year = year + 1;

In the first statement, the numeric value stored in the variable inrate is multiplied by the
value stored in amount and the product is added to amount. The result is stored in the
variable value. This process is possible only if the variables amount and inrate have already
been given values. The variable value is called the target variable. While all the variables
are declared for their type, the variables that are used in expressions (on the right side of
equal (=) sign of a computational statement) must be assigned values before they are encoun-
tered in the program. Similarly, the variable year and the symbolic constant PERIOD in
the while statement must be assigned values before this statement is encountered,

Assignment Statement
Values can be assigned to variables using the assignment operator = as follows:

L T L T S ARl A ik i gty R e
: Ll c st a F g =T 4 5

(311

We have already used such statements in Chapter 1. Further examples are:

initial_value = 0;
final_value = 100;
balance = 75.84;
yes = 'x's

C permits multiple assignments in one line. For example
initial_value = 0; final value = 100;
are valid statements.

: An assignment statement implies that the value of the variable on the left of the ‘equal
sign’ is set equal to the value of the quantity (or the expression) on the right. The statement

year = year + 1;

- Means that the ‘new value’ of year is equal to the ‘old value’ of year plus 1.
During assignment operation, C converts the type of value on the right-hand side to the
type on the left. This may involve truncation when real value is converted to an integer.

It is also possible to assign a value to a variable at the time the variable is declared. This
takes the followin g form:

.dﬂtﬂ-tjrpe variable_name = mnmnt; i s
Some examples are: o '

1

int final value 100;
char yes = Ix's

75.84;

double balance

I
ad

The process of giving initial values to variables is called initialization. C permits the iz
tialization of more than one variables in one statement using multiple assignment operatdtd
For example the statements '

p=qg=g¢§= 0;

X =y =32 = MAX;
are valid. The first statement initializes the variables p, q, and s to zero while the secgf
initializes x, y, and z with MAX. Note that MAX is a symbolic constant defined at the be ff .

ning.
Remernber that e:pternal and static variables are mmalmed to zero by dzfnq!t A,I.l
'vanablas that are not :mhglmad explicitly will contain gnrbage 3 it

Pragmm f;Fig 2.8 shows typical declarctiuns. ussrgnmants nnd -_'
stored In varlous types of variables; .. WPER U

The vanah]aa x and p have been declared as floating-point variables. Note that the .',;,; |
the value of 1.234567890000 that we assigned to x is displayed tinder different otitput'f
mats. The value of x is dmpla:,red as 1.234567880630 under %. 121f format, while, t.haa'

that can store values only up to'six decimal places.
The vﬂnﬂbl& m that has been declarad as int is not able to store the value 54321 cor

clared as unmgued] has stored the value 54321 correctly. Slmﬂarl:.r. the long int variab |' I
has stored the value 123456?39{] correctly. :

value is pnnted as 9.876543 under %If format. Noté that unless specified otherwise, ti§
printf function will always display a float or double value fo six decimal places. We, il
discuss later the output formats for displaying numbers. Ny

Program

main()

{]

f LIRS B DECLARATIONS. cvvvvivane LR L L) G)
float XD $
double y,q ;
unsigned k ;

¥ isssnnnns DECLARATIONS AND ASSIGNMENTS.....vovvvues */
int .+ .m = 54321 ; Yy
long int n = 1234567890 ;

J*eeeeieeae JASSIGNMENTS. . cvvvnnnnncnnnnrinnnnss .] s

x = 1,234567890000 ;
y = 9.87654321 ;
k = 54321 ;
p=gq=1.0;
! Lo, PRINTING....cuvvvss B P R R "/

e Cionstants, Variables, and Data Types

E _.___l 41

printf("m = %d\n", m) 3

printf("n = %1d\n", n) ;

printf("x = %.121f\n", x) ;

printf("x = %f\n", x) ;

printf("y = %.121f\n",y) ;

printf("y = $1f\n", y) ;

printf("k = %u p = %f q = %.121f\n", k, p, q) ;
m= -11215

n = 1234567890

x = 1,234567880630

x = 1.234568

y = 9,876543210000

y = 9,876543

k = 54321 p = 1.000000 q = 1.000000000000

ST magee, i

Fig. 2.8 Examples of assignments

]keadlng Data from Keyboard

Eﬁnuther way of giving values to variables is to input data through keyboard using the scanf
function. It is a general input function available in C and is very similar in concept to the

printf function. It works much like an INPUT statement in BASIC. The general format of
lllnlnl' is as follows:

| scanf(“control string”, &variablel,&variable2,....);

The control string contains the format of data being received. The ampersand symbol &
before each variable name is an operator that specifies the variable name’s address. We must
El]wayg use this operator, otherwise unexpected results may occur. Let us look at an exam-
ple:

scanf(*%d", &number);

When this statement is encountered by the computer, the execution stops and waits for
tha.vnlue of the variable number to be typed in. Since the control string “%d” specifies that
an integer value is to be read from the terminal, we have to type in the value in integer form.
Once the number is typed in and the ‘Return’ Key is pressed, the computer then proceeds to
the next statement. Thus, the use of scanf provides an interactive feature and makes the
Program ‘user friendly’. The value is assigned to the variable number,

The program in Fig. 2.9 lllustrates the use of scanf function.

™
'_I'hﬂ first executable statement in the program is a printf, requesting the user to enter an
Integer number. This is known as “prompt message” and appears on the screen like

Enter an integer number
As s00n as the user types in an integer number, the computer proceeds to compare the

42| |
value with 100, If the value typed in is less than 100, then a message
Y our number is smaller than 100
is printed on the screen. Otherwise, the message
Y our number contains more than two digits
is printed. Outputs of the program run for two different inputs are also shown in Fig. 2.

Program
main() (3
; { '
| int numh?r;
pr1ntf{‘Enter an integer number\n");
scanf ("%d", &number); AP :)
if (number <100) . :
printf("Your number is smaller than 100\n\n"); o
else b T pacso e SEAT o L
printf("Your numbér contains more than two digits\n");
4] . ! ; L}
| Output 4
| Enter an integer number i
.. . 5‘ X } _ o 3 ._"
H Your number is smaller than 100 ' T |
' Enter an integer number
o 108

Your number contains more than two digits

T B

scanf function for nteractive computing

Some compilers permit the use of the ‘prompt message’ as a part of the control s in :_.
scanf, like ; :
scanf("Enter a number %d",&number);

We discuss more about scanf in Chapter 4. 1
In Fig. 2.9 we have used a decision statement if...else to decide whether the numb er

less than 100. Decision statements are discussed in depth in Chapter 5. 3

Sample program 3 discussed in Chapter 1 can be converted into o maigl
flexible Interactive program using scanf as shown In Fig. 2,10, 5

In this case, computer requests the user to input the values of the amount to be inve stedy
interest rate and period of investment by printing a prompt message s i
Input amount, interest rate, and period |] |

i - 5 . ‘H:.._I:.r. I"'-'._'-. b _ -‘ H II.I.j- I
o AN X ATRDNE, 0,308 LYReT. |‘3

and then waits for input values. As soon as we finish entering the three values correspond-
ing to the '

e T T -
e L

Program
main()

int year, period ;
float amount, inrate, value ;

printf("Input amount, interest rate, and period\n\n") ;
scanf ("%f %f %d", Lamount, &inrate, &period) ;
printf("\n") ;

year = 1 ;

while(year <= period)
{

value = amount + inrate * amount ;
printf("%2d Rs %8.2f\n", year, value) ;
amount = value ;

year = year + 1 ;

 Qutput
Input amount, interest rate, and period

10000 0.14 5

1 Rs 11400.00
2 Rs 12996.00
3 Rs 14815.44
4 Rs 16889.60
5 Rs 19254.15

Input amount, interest rate, and period
20000 0,12 7

5 22400,00
s 25088.00
28098.56
31470.39
35246,84
39476.46
44213.63

Foh '..l: >3 1 }

Mo

i N N B el B e

v

A

I grg;_.r-cm.-;..-{_lf.,- i oo
three variables amount, inrate, and period, the computer begins to calculate the amount]
at the end of each year, up to ‘period’ and produces output as shown in Fig. 2.10. b

Note that the seanf function contains three variables. In such cases, care should be exer-
cised to see that the values entered match the order and type of the variables in the list. Any
mismatch might lead to unexpected results. The compiler may not detect such errors.

[211] DEFINING SYMBOLIC CONSTANTS

We often use certain unique constants in a program. These constants may appear repeated]
in & number of places in the program. One example of such a constant is 3.142, representin
the value of the mathematical constant “pi”. Another example is the total number of stu
dents whose mark-sheets are analysed by a ‘test analysis program’. The number of students
say 50, may be used for calculating the class total, class average, standard deviation, etc. Wg
face two problems in the subsequent use of such programs. These are

1. problem in modification of the program and

2. problem in understanding the program.

Modifiability

We may like to change the value of “pi” from 3.142 to 3.14159 to improve the accuracy of
calculations or the number 50 to 100 to process the test results of another class. In both the
cases, we will have to search throughout the program and explicitly change the value of the
constant wherever it has been used. If any value is left unchanged, the program may pro
duce disastrous outputs. s

Understandability

When a numeric value appears in a program, its use is not always clear, especially when th
same value means different things in different places. For example, the number 50 may
mean the number of students at one place and the ‘pass marks’ at another place of the samg
program. We may forget what a certain number meant, when we read the program somg
days later.

Assignment of such constants to a symbolic name frees us from these problems. For exar
ple, we may use the name STREN GTH to define the number of students and PASS MAKR
to define the pass marks required in a subject. Constant values are assigned to these nameg
at the beginning of the program. Subsequent use of the names STRENGTH ang
PASS MARK in the program has the effect of causing their defined values to be automaty
is defined as follows: .

i S 2

R TR
w ey ..._“_ .'-'ﬁ L 51‘.{_-;'!:",.. el l-l-- (2
7] I.I‘i.l -:I?I-'-'-E = Al 4y } 2]

.......

[T

ples of constant definitions are:
#define STRENGTH 100
fdefine PASS MARK 50
#define MAX 200
#define PI 3.14159
Symbolic names are sometimes called constant identifiers. Since the symbolic names ar
constants (not variables), they do not appear in declarations. The following rules apply to ¢

#define statement which define a symbolic constant: '

'

P P R T e e e - T

Lol

o &

v

8.

Constants, Variables, and Data Types — 145

Symbolic names have the same form as variable names. (Symbolic names are written
in CAPITALS to visually distinguish them from the normal variable names, which are
written in lowercase letters. This is only a convention, not a rule.)

No blank space between the pound sign ‘#" and the word define is permitted.

“#' must be the first character in the line.

A blank space is required between #define and symbolic name and between the sym-
bolic name and the constant.

#define statements must not end with a semicolon.

After definition, the symbolic name should not be assigned any other value within the
program by using an assignment statement. For example, STRENGTH = 200; is ille-
gal,

Symbolic names are NOT declared for data types. Its data type depends on the type of
constant.

#define statements may appear anywhere in the program but before it is referenced
in the program (the usual practice is to place them in the beginning of the program).

#define statement is a preprocessor compiler directive and is much more powerful than
what has been mentioned here. More advanced types of definitions will be discussed later.
Table 2.11 illustrates some invalid statements of #define,

Table 2.11 Examples of Invalid #define Statements

E@MEM Validity Remark
#define X =25 Invalid =" sign 1s not allowed
#define MAX 10 Invalid No white space between # and define
#define N 25; Invahd No semicolon at the end
Adefine N5, M 10 Invalid A statement can define only one name.
#Define ARRAY 11 Invalid define should be in lowercase letters
#idefine PRICES 100 Invalid $ symbol is not permitted in name
212| DECLARING A VARIABLE AS CONSTANT

We may like the value of certain variables to remain constant during the execution of a

Program. We can achieve this by declaring the variable with the qualifier const at the time
of initialization. Example:

const int class size = 40;

const is a new data type qualifier defined by ANSI standard, This tells the compiler that the
value of the int variable class_size must not be modified by the program. However, it can be
used on the right_hand side of an assignment statement like any other variable.

DECLARING A YARIABLE AS YOLATILE

ANSI standard defines another qualifier volatile that could be used to tell explicitly the
mHI!JllEI' that a variable’s value may be changed at any time by some external sources (from
Outside the program). For example:

volatile int date;

“| PR ARSIE

The value of date may be altered by some external factors even if it does not appear on the
left-hand side of an namgnment statement, en we declare a variable as volatile, the
compiler will examine the value of the variable each time it is encountered to see whether
any externsl alteration has changed the value,

Rermember that the value of a variable declared as volatile can be modified by its own
program a¢ woll. If we wish that the value must not be modified by the program while it may
be altered by some other process, than we may declare thB \ranahlﬁ as buth cnnnt ﬂnd vola-
tile as shown below:

volatile const int location -Illﬂﬂ;.

AT
h.h-’ Wi

T A
Pruhlam nf data werﬂnw occurs when the value of a vanahle is mther too big or tuu small for
the data type to hold. The largest value that a variable can hold also depends on the ma-
chine. Since floating-point values are rn'qndad off to the number of significant digits allowed
(or specified), an overflow normally results in tha hrgeat pnamblu rea] value, whereas an
underflow results in zero, . .

Integers are always emct w:thm the hnnta of the range of the mtag:ra] data types used.
However, an overflow which is a gerious problem may occur if the data type does nol match
the value of the constant. C does not provide any warning or indication of integer overflow.
It simply gives incorrect results. (Overflow normally produces a negative number.) We
should therefore exercise a greater care to define correct data types for handling the input/
output values.

Do not use the underscore as the first character of identifiers (or variable
‘names) because many of the identifiers in the system library start with |
" underscore. }

Use only 31 or less characters for ldantlﬁers This helps ensure portability

of programs. ;

Do not use keywords or any s:,rstnm library names for identifiers.

Use meaningful and intelligent variable names.

- Do not create variable names that differ only by one or two letters.

Each variable used must be declared for its type at the beginning of the

program or function,

All variables must be mit:ahznd before they are uﬂad in the pmg'rnm

Integer constants, by default;, assume int types. To make the numbers

long or unsigned, we must append the letters L and U to them,

Floating point constants default to double. To make them to denote float

or long double, we must append the letters F or L to the numbers,

Do not use lowercase 1 for long as it is usually confused with the number 1. |

B

> > B> BR2RE P

.._ o e AT ol :I::.- b : , s A e i
- Constants, Variables, and Data Types o | 47
- B gt L AT B CLF N P AT 2t i i

Use single quote for character constants and double quotes for string con-
stants,

A character is stored as an integer. It is therefore possible to perform arith-
metic operations on characters,

Do not combine declarations with executable statements.

A variable can be made constant either by using the preprocessor com-

mand #define at the beginning of the program or by declaring it with the
qualifier const at the time of initialization '

2R B B

i R T

#3 Do not use semicolon at the end of #define directive,

The character # should be in the first column.

#1 Do not give any space between # and define.

C does not provide ary warning or indication of overflow. It simply gives

incorrect results. Care should be exercised in defining correct data type
» ' -#3 'Avariable defined before the main function is available toall the functions
-inthupm’g;rpm. ;e - N

 # Avariable defined inside a function is local to that function and not avail-
i e ~ able to other functions. . | ;0 . AT VRO B o g

X 2
l. Calculation of Average of Numbers =,
A program to, calculate the average of a set of N numbers is given in Fig, 2.11.
Program ’
tdefine N 10 /* SYMBOLIC CONSTANT */
main()
(.
int count ; /* DECLARATION ‘OF "/
float sum, average, number i /* VARIABLES wy
sum = 0 ~/* INITIALIZATION */
count =0 ; /* OF VARIABLES nf
while(count < N)
{
scanf("%f", &number) ;
sum = sum + number ;
count = count + 1 ;
e |
average = sum/N ; . X :
printf("N = %d Sum = %f*, N, sum); !
printf(" Average = %f", average):
)
Output
|

48
E 4.67
1.42
7 :
, 3.67 .
4.08 j
2-2' A
: 828 vl 1 e GG T Gttty orihob s
'_,'l 8.21 LR 4 % e -
| N =10 Sum = 38.799999 Average;= 3.880.

........

The variable number is déclared as float and therefére it can take both integer and real
numbers. Since the symbolic constant N is assigned the value of 10 using the #define state-
ment, the program accepts ten values and calculates their sum using the while loop. The
variable count counts the number of values and as soon as it becomes 11, the while loop is
exited and then the average’is calculated.” ~— ~ 3 ‘

Notice that the actual value of sum is 38.8 but the value displayed is 38.799999. In fact, the
actual value that is displayed is quite dépefiderit on'the computer system. Such an inaccuracy
is due to the way the floating point numbers are internally represented inside the computer.

2. Temperature Conversion Problem = ' ’

The program presented in Fig. 2.12 converts the given temperature in fahrenheit to celsius
using the following conversion formula:

F-32
C= 18
Program -

#define F_LOW 0 [mmmm— e ————— */
#define F_MAX - 250 /* SYMBOLIC CONSTANTS — */
fdefine STEP 25 L */
main()
{

typedef float REAL ; ©/* TYPE DEFINITION */

REAL fahrenheit, celsius ; /* DECLARATION */

fahrenheit = F_LOW ; /* INITIALIZATION */
printf(*Fahrenheit Celsius\n\n") ;

while(fahrenheit <= F_MAX)

{

celsius = (fahrenheit - 32.0) / 1.8 ;
printf(" %5.1f %7.2f\n", fahrenheit, celsius);

| 40

fahrenheit = fahrenheit + STEP ;

}
}
Output
Fahrenheit Celsius
0.0 -17.78
25.0 -3.89
50.0. .+ 10,00
75.0 23.89
100.0 37.78
125.0 : 51.67
150.0 10856
| o 175.0 - 719.44
’ 200.0 93,33
225.0 107.22
250.0 *121.11

The program prints a conversion table for reading tamp&rntura in celsius, given the
fahrenheit values. The minimum and maximum values and step size are defined as symbolic
constants. These values can be changed by redefining the #define statements, An user-
defined data type name REAL is used to declare the variables fahrenheit and celsius.

The formation specifications %5.1f and %7.2 in the second printf statement produces two-
column output as shown, .

.wlaw Questions

2.1 State whether the following statements are frue or false.

(a) Any valid printable ASCII character can be used in an identifier,

(b) All variables must be given a type when they are declared.

(¢) Declarations can appear anywhere in a program.

(d) ANSI C treats the variables name and Name to be same.

(e) The underscore can be used anywhere in an identifier.

(H The keyword void is a data type in C.

(g) Floating point constants, by default, denote float type values.

(h) Like variables, constants have a type.

(i) Character constants are coded umng double quotes.

(i) Initialization is the process of assigning a value to a variable at the time of decla-

ration.

(k) All static variables are automatically initialized to zero,

(1) The seanf function can be used to read only one value at a time.
2.2 Fill in the blanks with appropriate words.

* SRR VT T O e
g e A
(a) The keyword can be used to create a data type identifier, b
(b) is the largest value that an unsigned short int type variable can store & §
(c) A global variable is also known as variable. i
(d) A variable can be made constant by declaring it with the qualifier
time of initialization.
2.3 What are trigraph characters? How are they useful? ,
2.4 Describe the four basic data types. How could we extend the range of values
represent? ;
2.5 What is an unsigned integer cunstant‘? What is the slgmﬁ:ance of declaring a constag
unsigned?
2.6 Describe the characteristics and ‘purpose of escape sequence characters.
2.7 What is a variable and yhat is meant by the “value” of a vanable?
2.8 How do variables and symbolic names differ? :
2.9 State the differences between the declaratlun of a vanable and the deﬁmtmn .'.
symbolic name.
2.10 What is initialization? Why is it lmpartant'? 2
2.11 What are the qualifiers that an-int can have at a time? . - - - -
2.12 A programmer. would like to use the word DPR to declare all the dnu]:le-pre i i
floating point values in hig program. How could he achmve this? -3
2.13 What are enumeration variables? Hnw are they déclared? What is the advantag
. using them in a prngmm?
'2.14 Describe the purp-nse of the mlahﬁers cunst and volatile. ¢ i
9.15 When dealing with very small or very large numhers what steps wqud you takefs
improve the accuracy of the calculations? ;
2.16 Which of the following are invalid constants and why?

0.0001 bx1.b 99999
+100 75.45 E-2 “15.75"
-45.6 -1.79e+4 0.00001234
2.17 Which of the following are invalid variable names and why'?
Minimum Firstname - -~ nl+n2 &name
doubles 3rd_row n$ Rowl
float Sum Total Row Total Column-total - -
2.18 Find errors, if any, in the following declamtmn statements.
Int x; i
float letter,DIGIT;
double = p,q

exponent alpha,beta; -
m,n,z: INTEGER
short char c;
long int m; count;
long float temp; -
2.19 What would be the value uf X aﬂetexecutmn of tha fn]lﬂmng statement.a'?
int x, vy = 10;
char z = 'a';
=y + 23 2
2.20 Identlf_v syntax errors in the following program. After mrrentmns what output wotll
you expect when you execute it?

E — Constants, Variables, and Data Types I51

|
ﬁ #define PI 3.14159
main()
[
int R,C; /* R-Radius of circle
float perimeter; /* Circumference of circle */
float area; /* Area of circle */
C=PI
R=05;

Perimeter = 2.0 * C *R;

Area = C*R*R;

printf("%f", "%d", &perimeter,farea)
}

2.1 Write a program to determine and print the sum of the following harmonic series for a
given value of n:

1+ 1/2+1/3 +...4+ 1/n

The value of n should be given interactively through the terminal.
2.2 Write a program to read the price of an item in decimal form (like 15.95) and print the
output in paise (like 1595 paise).
2.3 Write a program that prints the even numbers from 1 to 100,
2.4 Write a program that requests two float type numbers from the user and then divides
the first number by the second and display the result along with the numbers.
2.5 The price of one kg of rice is Rs. 16.75 and one kg of sugar is Rs. 15. Write a program
‘ to get these values from the user and display the prices as follows:
|
|
|
|
|

; .rogramming Exercises

*** LIST OF ITEMS ***

Item Price
Rice Rs 16.75
Sugar Rs 15.00

2.6 Write program to count and print the number of negative and positive numbers in a
given set of numbers. Test your program with a suitable set of numbers. Use scanf to
read the numbers. Reading should be terminated when the value 0 is encountered.
Write a program to do the following:

| (a) Declare x and y as integer variables and z as a short integer variable.

| (b) Assign two 6 digit numbers to x and y

| (e} Assign the sum of x and y to z

: (d) Output the values of x, yvandz

’ Comment on the output.

| 2.8 Wl'ite a program to read two floating point numbers using a scanf statement, assign

2.7

BIr sum to an integer variable and then output the values of all the three variables.

| Ezl-g ﬁ!‘ite a program to illustrate the use of typedef declaration in a program.

rite a program to illustrate the use of symbolic constants in a real-life application.

