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H3=EG—F2=142+a2sothatH:\/uz+a2

Again l-1><r2:(asmv,—aCOSV,u)

N = n X I, _ a . a u
NOW N = = ‘\/—2\2 sinvy, — COS V, ——
H u" +a 4 g u® +a?
Let the components of N be (N, N,, N,).

Using (ii), the direction coefficients of the parametric curves are

1 1 1
—,0 = 1, —_ | = —_—
(JE ) (1,0) and [O, \/EJ 0, 2 ]

u* +a

If yis the angle made by N with the z-axis, then cos Y=N;= S

u* + a?

If (I, m’) is the direction coefficient orthogonal to the parametric direction

v = constant, then by Theoem 2 we have I’ = — %(Fl +Gm),m’ = %(El + Fm).

Substituting for [, m, E, F, G and H in the above step, we have I’ = 0 and

’
m =

1 i 3 o : .
_—5\/'—_—2 which is the direction of the parametric system u = constant. This
u +a

is what we expect, since the parametric curves are orthogonal.

211 FAMILIES OF CURVES

So far, we were concerned with a single curve lying on a surface and associated
tangential direction. Now we shall introduce families of curves on a surface and
study some basic properties of such families.

Definition 1. Let ¢(u, v) be a single valued function of u, v possessing
continuous partial derivatives ¢,, ¢, which do not vanish together. Then the

implicit equation ¢(u, v) = ¢ where c is a real parameter gives a family of curves on
the surface r = r(u, v).

For different values of c, we get different curves of the family lying on the
surfaces. From the very definition, we note the following properties.

(1) Through every point (, v) of the surface, there passes one and only one
member of the family.

Let ¢(uy, vo) = ¢, where (u,, vy) is any point on the surface. Then
¢ (u, v) = ¢, is a member of the family passing through (1, v). Hence
through every point (1, v,) on the surface, there passes one and only one
member of the family.

(i) As noted in (vi) of 2.10, the Adirection ratios of the tangent to the curve of
the family at (, v) is (- @5, ¢;).
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We shall ﬁnd a x b expressing sin 6 in terms of H and u where u = |b].
From the definition la]=1.
We have laxb| =pusin B )
and axb =(¢ +mo,) (ry Xr,) so that
laxb| =H(¢, + m¢,) Q)
Equating (1) and (2), we obtain
Hsin 6 =H(lg, + my) 3)
Since (I, m) are the direction coefficients of any direction through P, we have
du dv
" (4)

Using (4) in (3) and simplifying, we get sin 6= H d¢

ds
Now i and H are always positive and do not depend on (I, m).

Hence ~d—— has maximum value % when sin 8 has maximum value in which
s

case 0= % In a similar manner, ((11—¢ has minimum value — ﬁ, when 6= -~
s

Since H > 0, and u > 0, the orthogonal direction for which Q > 0 is such

ds
d¢

that 6= E. Hence
2 ds

has maximum in a direction orthogonal to

®(u, v) = constant.

212 ORTHOGONAL TRAJECTORIES

Among the families of curves on a surface, we are interested in those families

which cut each other orthogonally. This leads to the definition of orthogonal
trajectories.

Definition. Let ¢(u, v) = c be the equation of the given family of curves on
the surface r =r (i, v). If there exists a second family of curves y(u, v) =k lying on
the surface such that at every point of the surface two curves one from each family

are orthogonal, then the curves of the second family are called the orthogonal
trajectories of the first family.

Note. The above definition of trajectories is a generalisation of orthogonal
Parametric curves. Each family of orthogonal parametric curves can be considered
as an orthogonal trajectory of the other.

The following theorem gives the existence and parametrisation of orthogonal
trajectories of the given family.

Theorem 1. Every family of curves on a surface possesses a family of
orthogonal trajectories.
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Proof. Letr=r(u,v) be the equation of the surface. Let the givey fﬁmily .

curves be defined by
Pdu+QdV=O (l)

¢ of the curve has the direcyj
Since . %,the tangent at any point ectio -

-0, P). Letv (du, dv) be the direction ratios f)f the tangent at (u, v) of a Memp, )
the orthogonal trajectories of the given family. o a0 "
We know that the tWO directions (4 ) and (X', ") are orthogonal, the,
g+ FOW + A+ Gup'=0
Applying this condition of orthogonality to the tWo directions (= @ ”
(du, dv), we obtain
E(-Q)du+ F(-Qdv + Pdu) + GPdv = 0

which simplifies t0 (FP- EQ)du+ (GP-F Q) dv= 0

; ; V)
which is the differential equation of the orthogonal trajectories of the given fan ;

anq

of curves. .

Since EG - F?+0and Pand Q do not vanish simultaneously, the Coefficey
of du and dv are continuous and do not var}igh together: Hence the differemi:l
equation of the orthogonal family exists and it is the solution of (2).

Theorem 2. The parameters on a surface can always be chosen so the g,
curves of the given family and the orthogonal trajectories become parameys,
curves. '

Proof. Let the given family o(u, v) = c of curves be given by the differeny
equation

Pdu+Q dv=0 4

Then by Theorem 1 of 2.11, there exists an integrating factor A= Adu, )0

such that P = A¢, and Q = A¢,.

By Theorem 1, the orthogonal family y(u, v) = k of the given family is t
solution of

(FP-EQ)du + (GP -FQ)dv =0
Hence there exists an integrating factor 41 (u, v) # 0 such that FP - EQ=}

and GP - FQ = puy, where y, = iu_f_and V= oy

du "
L I 0
Hence a(‘p’u’): du dv| | A n
duy) |y dy| |1 4

—(Fp- 1 ~
3w 3| |t EO) “(GP FQ)

1
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Let us derive the differential equation of e,
C
ﬁr. —_gsin g
dé 4
Eliminating a between (1)and (3), We have
é‘: __rtan@or ldr+tan 6d8=0
df r
: Q =tan 6
5o that we have P = = = .

tion of the orthogonal trajectory ig

By Theorem |, the gifferential €qud

(FP—EQ)du+ (GP—FQ)dv:O .
Using (2) and (4) in (3), W€ get
21 0 ar _ a6
_tan Bdr+T ;d@- or ’dtan ; P
ifying we have T = ¢ Sil 8 "

Integrating ( 6) and simpl
where cis @ constant t0 b

From (1), when g=0,1=
¢ =a. Hencethe system of orthogonal

e found out.
4. Using this initial condition, we have from (1)

trajectories of the given systemisr=asing

213 DOUBLE FAMILY OF CURVES

Earlier we have characterised a family of curves by a differential equation of te
form Pdu + Qdv = 0. So it is natural to expect a quadratic equation in (du, dv)wil
give a double family of curves. In this connection, we have the following

definition.
Definition. If P, 0 and
vanish together and if Q2 -PR>

Pdu7‘+2Qdudv+Rdv2=0

R are continuous functions of u and v which dom!
0, then the quadratic differential equation

Al

represents two families of curves on the given surface.

Since (du, dv) give the direction ratios of the tangential directi
the surface, we obtain the two directions of the double family at a powl

surface by solving the quadratic

du ¢ du !
Pl—| +20|— = |
(5) +20(5) =t

. : o fec”
Hence the question naturally arises under what conditions the N-/O tlheore‘“

become orthogonal directions. The answer is contained in the 10 owln
Theorem 1. The two directions given by

onsata poim o
t on N
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The Fi
Pdu® +2Q du dv + Rdv* =0 (1)

- orthogonal on a surface, if and only if ER - 2Q0F + GP =0
proof. 1f (L m) and (I', m’) are the direction coefficients of the two families of

4

: ! :
curves (1) ata point P on the surface, then — and — are the roots of the quadratic

m m
P(gﬂ)2+2Q(gﬁ)+R—0 (2
Y =1 B A%
l I 20 WU R
LA 03
Hence e P P (3)

By Theorem 1 of 2.10, (I, m) and (', m") are orthogonal if and only if

w i
E— +F-(——+ ,)+G=O +(4)
mm m m
Using (3) in (4), we obtain ER-2 FQ + GP =0 il
Corollary. The parametric curves are orthogonal if and only if F = 0.
The differential equation of the parametric curves is dudv = 0. ..(6)

Hence (6) is a double family (1) with P =0, Q #0, R =0. Using these the
condition of orthogonality becomes QF = 0. Since Q # 0, F =0 which proves the
corollary.

Theorem 2. If 6 is the angle between the two curves given by the double
family
P du? +2Q dudv + R v’ (1)

at a point (1, v) on the surfaces, then

2H (Q2 _ PR)1/2
ER-2FQ +GP

tan 6 =

Proof. If (I, m) and (I, m’) are the direction coefficients of the tangential
directions at a point of the double family (1), they are the roots of the quadratic

2

P(iu—) +2Qiu—+R=0 (2}
dv dv

so that b I __._Z‘g,_il__ =§ (3)

m m’ P mm" P
If Bis the angle between the two directions, then from Theorem | of 2.10, we

know that

tan 6 = i 4 ) A4

El' + F(Im" +ml") + Gmm’
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Theorem. To ;ach direction of he langent g 4 Curve C
wlTCSPOHdS a direction of the tangen; Catp’ip g
proof. Let Cbeacurve of g class > | Passing lhrough P and Iv;
it be parametrically represented py W= u(t)and y - o), If‘”;”l in
corresponding to S undler the/relau.on (1) in the Preceding par;
will be mapped onto C” on § passing thr

The direction ratios of the tangents a¢ p to Care (i, v) where; = 34 . _dv

—v=Y
. dt dt
Now the direction ratios of the tangents at p’

to C’ are (', V") where

Solving the above equations for 5 and v, we get

u :l L‘llal—\}'aﬁ
J v dv )

c_L(.,00 . dy
V= J[v o u aujwhere];ato

which shows that a given direction to a curve C” at P’ corresponds to a definite
direction at P to C and vice-versa.

Note. Since the functions ¢ and
parametric transformation, after transfo
can be reparametrised with (u,v)as par
the corresponding point P of S and as
and P’ have identical parametric

V satisfy the conditions for a proper
rming the parameters of S in this way, S’
ameters. To each point P’ of §*, we can take
sign the parameter (u, v) of P to P’. Thus P

values. We also assume that such a
correspondence preserves some geometrical properties. These lead to the
following definition of isometry between S and S’

Definition. Two surfaces S and S’ are said to be isometric or applicable if

there exists a correspondence 1’ = ¢(u, v), v’ = y(u, v) between their parameters

where ¢ and Y are single valued and 8_(:% # 0 such that the metric of S is
u,v

transformed into a metric of S’. The correspondence itself is called an isometry.

From the very definition of an isometry, we find that the lengthqu az.arc of 2
curve Cin § must be equal to the length of the corresponding arc C” in §" That lt
ds = ds’ where ds and ds’ are the corresponding linear elements and this must be
true for 4] U, v, du, dv and u’, v’, du’, dv’ given by the .proper p“lmmc,l‘r_“‘
ransformation This shows that an isometric transformation maps the first
fundamenty) form of S into the first fundamental form of S”.

T
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ino Examples 1 and 2 are some obvious cases of an
The following

1§
Qmelp
between surfalces- PR slightly bent, the length of the cury
1. Ifaplane

; raw
ltered. Thus the original plane sheet and the slightly beng :%i
is not altered.
isometrlc-heet may be isometric with a I_)ortion_ of a cy?inder of g 9
2. Aplanes nsion, but the entire plane 1s not 1some}r1c With the CQI.Q“
large g:;n;lanc and the cylinder are locally isometric, Ylin
s , e b w .
lTl;u Find the surface of revolution which is isometric With the Teg;
Example J. 0,
- icoid. :
the nghtS h;:hcrm (g () cos v, g(u) sinv, f(u)) the surface 150metrig y,
LetSber=
helicoid §” given by

(e

{
e

ith the

g
r' = cosV, u sinv', av’)
: the metrics, we ¢ :
Using the fact that the isometry preservesd eCe etermine (1) gy T
and then indicate the region of correspondence. (
= or _ (8,(u) cos v, g; (u) sinv, f,(u))
L u
by b o i 4 i 07 )
27 9y
Now — E=rTi=giW+fi).F=ry1y=0,G=ryp, . 0
: 2
Hence the metric on § is (gl2 +f12) du” + g°dv (]
For the surface §’, we have
r," =(cosV,sinv’,0), r,’ = (- u’ sin v, u' cos V', a)
Hence E'=r/r/=1,F=r/ r,=0,G = Ty r) = (2, N
Hence the metric on §” is du’® + (1% + a*) r
The problem is to find the transformation from S to §’ such that (1) ang )
identical. Without loss of generality let us take ' = O(u),v'=y.
Then we have di’ = ¢,(w) du, dv' = gy, |
Using (3)in (2), we get 97 di? + (¢? + ¢2) gy I
(4) is the metric after transformation. Hence (1) and (4) are identical so hat
have

8=+ ), g2+ f2= g2 .

From the equationg (5), we have to obtain fand g eliminating ¢. Howeve
can guess the solution of (5) as follows.

Let us take ¢(u) = a sinh y and 8(u) = a cosh u.
(6) satisfies g? = & +d Using (6) in the second equation of (5), we g¢t

202 L
a“sinh®y + flz(u) =a*cosh?y so that flz(u) =4,
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rhe First

Thusfi( u) =a. Integrating and choosing the constant of integration to be zero,

- getf(“) = au. o
Hence the surface of revolution is generated by
x=acoshu,y=0,and z=au

pere the generating curve lies in the XOZ plane and the curve in the XOZ plane is
whe enary with parameter a and the directrix as z-axis. Such a surface of revolution
s known as catenoid.
Let us briefly describe the region of correspondence. The correspondence
A =a sinh u, v/ =V shows that the generators v’ = constant on the helicoid
corresponds 10 the meridian v = constant on the catenoid and helices u’ = constant
correspond t0 the parallels u = constant of the catenoid. Further u’, V' take all real
values on the helicoid, but on the catenoid we have 0 < v < 2 1. Hence the
correspondence is an isometry only for the region of the helicoid for
which 0 £ v < 2m. Thus one period of right helicoid of pitch 27a corresponds
jsometrically to the whole catenoid of parameter a. If we do not insist on this
condition, the correspondence is locally isometric.

Note. Instead of takingu” = ¢(u) and v’ =v, letus take v’ =pv wherep > 1, we
prove that the region of the right holicoid given by

W] < ———,0<V <2pm
p* -1

corresponds isometrically to the surface obtained by revolving that part of the
curve

u
x=apcoshu,y= 0,z= J' (cosh2 t— pZ sinh? t)1/2 dr.
0

given by |u| < cosh™! £ about the z-axis.
p’ -1
Making the transformation u’ = ¢(u), v’ = pv, the metric of the right helicoid
becomes
o2di? + (¢ + a®) p* &V’ (D

Comparing (7) and (1), we get
fl+gl=¢ andg’ = (¢* +a))p”.
Now choose ¢(x) = a sinh u, we find g(u) = ap cosh u.
Hence the curve in the XOZ plane is
X=ap cosh u, y = 0, and we determine f(«) by integration,

f12 (u) = ¢12 - g,2 = az(cosh2 u-— p2 sinh?® u)

it flu) = ar (cosh? ¢ — p? sinh? 1)!"2dt
0
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Geodesics on a Surface

3.1 INTRODUCTION

Defining a geodesic on a surface, we shall obtain cano
its normal property. Then after establishing the existe
a surface, we shall explain what is meant by geo
coordinates. We shall take up for detailed study the
to Gauss-Bonnet theorem which states that for
simply connected region R, the excess of C is e
where excess of the curve C is suitably defined.
briefly study the surfaces of constant curvatu
short account of conformal mapping and geod

geodesic on a surface are illustrated with th
previous chapter.

nical geodes;
C equas:
nce theorep Aol ¢
. of 3 €odeg;

desic Paralle] ap4 o
geodesic CUrvature esde.sk
any curve C Which engckidmg
qu.al to the tota] Curvatyre efS a
Motivated by these ideas, We (s)h R
rg. We conclude this chapterb,a .
€S1C mapping. All the Propertigg )fa

help of surf: 1 e
e p urtaces Introduced i, the

3.2 GEODESICS AND THEIR DIFFERENTIAL
EQUATIONS

We know that the straight line joining two points A and B in a plane s the
shortest distance between A and B. The extension of the notion of straight lincir
a plane to curves on surface leads to a special class of curves called geodesic
which we shall define precisely with the help of the notion, ‘shortest distance

‘stationary length’. So before proceeding further, we shall explain these i
notions.

If A and B are two points on a surface S, we can find lengths of differeggi‘;
joining them. Though this collection of lengths has non-zero greatest lO\Y?fgmﬁ
we cannot say that there is an arc AB on the surface corresponding 0 th: st
lower bound. Since the shortest distance between two points. ona surfoa‘;esiu R
shortcoming, we choosé the alternative method of defining a‘%;ﬁnim‘” i
surface as an arc of stationary length on a surface. This m}athod ([)ital caloulss ¥
geodesic on a surface is amenable to the treatment of differen ;

e ,U['\t"
. . . intrinsic ©
enables us to use differential equations for the study of such

R
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ot <8 mall yarjation OVer S is called a geodesic. sessing Stationary

P oo .
\5ﬂ‘;§;[ d B be t\'V(') Pomts on a surface r=r (u, v), On th

qidCf ] the arcs Jommg Aand B given parametrically as ue—surface’ let ug
cons 0,0 are of class 2. For every arc ¢, let us assume th = u(), v = y(p)
( B SO that the arcs are defined in [0, 1]. atr=0at A and

1z h arc and S(c) be the 1
o be 0D€ suc e length of the .
¢. Then W€ know that arc @ joining A and B on

. surface
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i = Edi® + 2Fdudv + Gdv* which gives

‘ 5 o )
2 =Eu +2 Fuv + Gv? so that we can take

1 1
= §a = _[0 Ei? +2 Fuv + GV di

Keeping the end points A and B fixed, let us deform the arc ¢ slightly and
sptain - Then We can take the equation of the new arc @’ parametrically as

() = u(®) + D), V(1) = V(1) + eur).

whereg>0is small and A(¢), (?) are such that 4(0) = (0) = 0 and A1) =u(1)=0.
After the deformation let the length of the arc be s(a’) which we can obtain by

replacing , v in S(c) by ', V. The variation in s(q) is s(&/) - s(@) which is of

order € in general.
Definition 2. If @ is such that the variation in s() is atmost of order & for

Jl small variations in & for different A(f) and L(?), then (<) is said to be

stationary and 0L is a geodesic.
face are intrinsic in the sense that it is

Note. Thus the geodesics on a su
defined by the metric on the surface independent of any particular parametric
ing theorem gives the differential

representation of the surface. The follow
equations of a geodesic.

Theorem 1. A necessary and sufficient condition foracurveu =u(t),v= (1)

oT oT
ona surface r = r(u, v) to be a geodesic i that U=—-"V>57 = 0 il L)
av du
e podf3T) 2T LA
dat\ou) Ou T dt ou

V—ii_ oT) T _ 1 ﬂé}”[“ .(2)
a\3v |9y 2T dt OV
Proof. Equations (2) are called geodesic equations and

m .
wzthgd of calculus of variations tO derive the equations (2). \Xue
Odtain (1) and then prove that the converse of (1) 18 also true.

use the usual
ith the help of (2),

-
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To prove (2), we need the following lemma.

Lemma. Ifg()isa continuous function for 0 <z <1 and if J‘l
. \)(t) g(t) di
X0

for all admissible functions v(?) as defined above, then g(r) =0 i
’ "N
1
Proof of the Lemma. Suppose jo v(z) g(@ = 0O for all admissip)
( functi
Ong

there exists a o between 0 and 1 such that g(; )

(¢) is continuous in (0, 1) and 75 € (0, 1) t(t)1 #0. Lety,
such that g(to) > 0 in (a, b) where 0 < a’< te<re eXists ,
follows. bsi

v(?) and g(1) # 0. Then
take g(zp) > 0. Since &
neighbourhood (a, b) of 1o

Now let us define a function v(?) as

o(0) = (t—a)3 (b—z‘)3 fora<t<bh
OforOSt<aandb<t_<_1

The v(?) is an admissible function in (0, 1) sO that (3) can be rewritten a5

: dr = @ d ’ l
j w() g(®)dt = _[0 v(z) g(¥)dt +L v(t) g(t)dt + jbv(t) gD dt

0

Using v(?) in [0, 1]in the above step,
b 3 3

- [[u-a® @0’ s W

1
jov(r) g(1)de
b, we get from (4)

—t)3>0in(a,b)andg(t)>0fora<t<

1
thesis jo (1) g ()t = 0 for all admisste

Since (t — a)3 b

1
J- w(t) g(dt>0 contradicting the hypo
0

functions v(?)-
Hence our assu

Consequently g =
Proof of the Theore

Let [f(u, Vv, u,v) = ,/ZT where

2T (u, v, Uy V) = 2= Eu* +2Fuv+ Gv?

In terms of f, the arc length s(@) is
1 1 1 . .
s(o) = J;)& dat = J. 1/2T dt = Jof(u, v, Uy v)dt
0

formation the arc-length s(ad) is
gi, v +emd

t there exists a fo such that g(t) # 0 is false
thus the lemma is proved.
d as follows.

mption tha
0 for all zin (0,1) and
m. To prove (2), we procee

After a slight de
1
s(a) = Jof(u +el v+ ER U T

Hence the variation in s(2) is

e
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1 1 , . A.,, . oy o
c(a"vf(a): Jo (flu+ EA VT EL UTEL, VHEL) = flu, v, ik, v)} i w3}
Taylor’s theorem for several variables, we get
Using
flu y+ EL VT EM i+ €A,V EL)
3f _Of _.of . af
=f<usv"""")+£)“ﬁ+€”-a_v”’la“u”“a‘\; +0(&) (6)
Using (6) in (5), we obtain
I of 8f of 9 f
(o) - = A——+ == =L
s(et) = 5(@) E.[o{ PR PR PR H AL I
We shall simplify the integral on the right hand side of (7) as follows.
Using integration by parts, we have
1
af 1of af 1 af
dt = d(A -l A=
.[aut-[oau()\:auojo 3
3¢
Since A=0att=0and =1, we have [ﬂ.—f} =0
ou 5
af 9 f
H ,1— =—
e [ 35 ar = [ 22 (au) t ®)
In a similar manner, we have
L.of L d(of
o3y “J e (av dt .(9)

Using (8) and (9) in (7) and simplifying,

) -s(a) =g 12/ 9F _d(9f of _df9f
s(e) - s(a) Ejo{)”[au b | b B dt + 0(&)

= e_[; (AL + uMyds + O(€?) (10)

Where L = [%i = di(%t-)], M= {(’;_f B g_L%—f)}
u t\ du Y PRI
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(
4 , “y,

td[i()nar

J |j
O,

on
For the arc &0 be geOdeSICs o) is atmost of oFder '32 for all sy, Var:
ation S( ’Of ¢, equation (10) implies that Ay,

and only if the var &)
Since £> 0 and s(0) - S(& )18
Jl (AL +uMydt = 0

i ~1)

2in0$t£lsuchthatl=u=0at ’

; ; of class
for all admissible functions A <y \

=1 d M), u(2) are of class 2, funcy;
fclass 1 an F lon
Since E, F, and ?oir:s(;tisfying the conditions as that of g() of the LsemandM

\ ; ‘
are contlﬂuc(:;s;;;;, Lemma to (1 1) choosing A, 1 and g as follows, g
Hence weé <

(i) Let vy =AHB= 0, and g(?)

] . . .
= himpliesL=0b
Then J . (AL + pM)dt = J.o AL dt = 0 which 1mp ¥ the Loy,
0
(ii) Let 1=0,v(H)=H and g(t) = M.

‘ ! M dt =0 which implies M =

Hence L=0, M =0are the differential c?quations for u(t) gng v(2). Since -
two equations do not involve these two points A and B explicitly, the equaiy
L =0, M =0 are the same for all geodesics on the surface.

Let us rewrite L =0, M =0in terms of T.

Jf
Since f=4y2T,L= S - E(_a;j becomes

-3
2T dt\ du dr du

JLjar_dfary ) 14Tt
J2T | du  dt\du Q27)** dt du
Since T # 0, cancelling A throughout, L = 0 becomes

AT

i(_a_T _a_T _ ldror b
dt\ ou dJu _2T711—5‘l;

In a similar manner we obtain for M
b
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1 aT_ d{oT) ' dT 3T
M= v dil 9y || T 7 = which gives
2T (9v a\ov )] " a1y 3 g

N

d(aTj aT _Lﬂa_T_

=% v 2T dr oy -(13)
Ltions (12) and (13) give the differential equations of a geodesic. (12)and (13)
e usually written as
g o 4[3T) 9T _ 1 arar
Td\di) du 2T @ oa -8
_dfsT)_aT _ 1 dror
“ar\9v) v 2T dr 9y - (1)

1 . - . .
where T(u, v, t, V) = > [Ed® +2F uv +G v? ]. This completes the proof of (2)

To prove (1) as the necessary and sufficient condition for arto be a geodesic on
the surface S, we proceed as follows.

To prove the necessity of the condition, let o be a geodesic on the surface so
that u(r), V() satisfy the differential equations (2).

From the second expression of U and V in (14) and (15)

oT /oT 0T _dT

we have v ==/ 5= sothatU—— - V— =0 which proves the necessity of the
u/ dv dv  du
condition.
To prove the sufficiency of the condition, we need the following lemma which
is true for any curve whether it is a geodesic or not.

Lemma. If U and V are as in (1), then uuwv:? ..(16)
t

~ Proof of the Lemma. Since each of U and V have two equal expressions for
1t, we sha]] prove (16) by considering the following two cases.

Case (i) In this case, we prove (16) by considering the first expression for U/
andV.

Since T is 5 homogeneous function of degree two in i and ¥, we have by
Euler’g Theorem,

.dT 0T .
U——+v_—=2T (17
ou v
Si :
Ince Tig 5 function of u, v, i, v, we get
dr 9T . 9T . oT. OT. .
VT cF U+ —Vv+—UuU+—V

dt  du dv du dv
17) and (18), we prove (16) .

B,

Using (
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!,,"
w

Substituitng for U and V, we have

o ."4(011 T, d(av“ oyp
wl+ vV=1u AT ey il (,)‘./J =

df. 0T ﬂad(UT +d(aT
Now consider, —d~t u T =4 Ju i

" d (0T ) _ d(u‘” ~u(dl
so that u = "dt‘ ou au

'”(20
In a similar manncr,

cd (0T d(.ar‘ ..(a’r

v—=—1=751V3, L

dr\ 9v de\ dv Qv 0
)

(21) in (19), we obtain
d ( 8TJ 9T . OT

Using (20) and

uU+vV='(E u—a~; Y T

d oT oT .OoT

o | Yo _y— =V =
dt av av av

__é_ u§1+‘)_a_t - aT +aTv+§1" aT
|4 av] Low 9V A T
d dar dT

2027 -—=—7 i 1 i
dt( ) o ” using (17) and (18)

Case (ii) In this we take the second expressions for U and V.

Now i U+ vV =1 1 drar), (Lot
2T dt Ju 2T dt dv

dr ua_7;+99_2 =,1_£2T=£by(17)
2T dt dr

Hence we have u U + vV= —dI
dt (isfyine
The sufficiency is established by showing that a curve on the surface Sah he
the condition (1) of the theorem is a geodesic. For this it is enoué if we®
condition (1) implies that U and V satisfy the geodesic equations @ ot 710
Let U and V satisfy the condition (1). Let us assume that i andV ore
for the same value of . Forifu =v =0 simultaneousl)’a then

oT .
— =FEu +F\3,and%7_—:=Fu + Gv
vV

du
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T .
9T _o simultaneously so that the condition is trivially satisfied

av

" ﬂ = O’
impli®® 34

jven condition, W€ have = O(say)

SN

2| &=

oT oT
Fei U=0 -5; and V=20 5; ...(22)

We shall find 6 using the Lemma.
dar

From the Lemma, we have Un + Vv = 1

Using (22) in the above equation, we get

dT or .9oT
al _ 1,2 —4v—1|0=
5 (uau+vav) 2TO by (17)

From the above equation, we find 6= —l—- é—z
2T dt

Using this value of @in (22), we get

e p—t —_ P .

which are t'he geodesic equations. Hence (u(®), v(1)isa point on the geodesic of a
surface which proves the theorem completely.

Note. By the lemma, U and V satisfy the equation 4 U + vV= gdz Hence
t

b . ; i .
oth the expressions satisfy the same equation SO that the two expressions for U
ations are equivalent to one

zgiagoirzorr“t’;iﬂgepepdent. Hence these two equ
v=fu). o functions u = u(t) and v = v(?) that the curve can be defined by
u:igrel(s::zl;ts ing the above theorem for the parametri
Th on a surface, we have the following theorem.
COnditiZ(:,rel:n 2. (i) When =@ for al! v.alues of u, a nece
that the curve v = ¢ is a geodesic 18
G EE2+FE]—2EF1=0
°0ndlilt)i::}t‘l?:t :‘hz c for all values of v on a surface, a necessary and sufficient
Proof, e curve u = c is a geodesic is GG * FG,-2GF,=0. .
eqUationS.of thn the curve v = c, u itself can be taken a3 a parameter SO that the
e curve are u = ¢ and v = constant.

c curves vV = constant and

ssary and sufficient




e on it SUMTICE 18 4 peg . 0
§ curve LL(’d‘“‘vlci' '%

W
1! that

o know
oy L we -
,‘I‘hm"“” ! e )1
By oy 77 =0 b

U 3y o

Lo the paramelric curve
o condition [or the part ¢y,
atin
So o ol

‘(‘l)«l(‘\\‘ll'. | - |
2 BT d1 and use them in (1)
We find U, V, i 3
niti s have
pFrom the definition, we h
e D) where B OE .
T= | (it 4+ 2Fuv Gv* where E, F and G o, funep:
) ncll()n
k o,
1l

()] [l' “ } '7'01”\7 f‘(ll\) ]
Now o

oT _ [l* il + 2Fuv + Gy ]
v

T or .. :

or —Ei+Fv, : ~=Fu+Gv

du v

According to the choice of the parameters, u=1,v=0

or 1. 9T 1 9T __ dT
o ——E —=-E),—=E, —=
Hence ™ F Y v ¥

Using (3), we get
_i(@_T_} oT dE 1

ou) ou ar 2"
Using the formula for the derivative of E as a function of u, v, we obtain

_0E du 8E dv 1 . 1

au dr av dt 2

Since u =1, and v =0, we have U = lE1
2

and (aT —ﬂ‘ﬂ“lE
o) dv dr 2°
_9Fdu QF dv 1 1
a —_— =Fl‘_—EZ
| u dt dv dt 2 2
Using (4) and (3)in (1), we obtain

1
1 1 ;=
EF- (F, = ;Ezj E=0 which gives EE,~ 2EF +F*
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y When # = constant, let v itself can pe take
Y

. ¢ . 145 a parameter
; =0, v = 1. Using these two, (2) becomes ler 50 that y = ;

T _1s 0T 1 37

Hence !

= = Py =<0y, —=F QZ:-.(
du 2 dv 2 T, TGy =G .(6)
Using (6), we get
yod(30) T _ar
di\du) du ar 39

By the formula for the derivative of F as a function of u, v

_ _0Fdu OdF dv | ' |
wonsin U =G G oy d 3O =R R - L,

wil 1 )

d (0T oT dG 1
have V=—| = |-—=%2 __g
Also we have d:(av] dv  dt 22
0Gdu 0Gdv 1 1
e Bl LY L (8
du dt dvdt 2 %2 o ? .

Using (7) an (8) in equation (1), we get
FE 1G)G—lG F =0 giving
275 5 2

GG, + FG,-2GF,=0

Converse follows by retracing the steps in both (i) and (ii)

Corollary. When the parametric curves are othogonal,

(i) v=constant is a geodesic if and only if E,=0

(i) u=constant is a geodesic if and only if G, =0

Since the parametric curves are orthogonal, F = 0.

Taking F = 0 in the theorem, we get the above particular cases. y

In the following, we obtain a generalised form of the above the(cj)rerrtxlz tjf 1:}11%
u=tand v= v(u) and this incidentally illustrate the complicated na
geodesic equation in general.

. ic, then
Theorem 3. If 4 # 0 in the neighbourhood of 2 pm?t Ont?sf%::(zgzlgecond
taking u(r) = 1, the curve v = v(u) is a geodesic if and only itV s2

order differential equation
5+ Py 4 Qi+ RV +S5=0

] E, FandG.
Where P, O, R and § are functions of u and v determined by




aT T,
. ses ot V v- x\f‘
Pro Using th ondif10 U o o = 6, We ahal ‘
deri
differentlal quation of th geodem tivg .
Now T=%[Ed2+2szfz +Gv)
?:Eu +F\3=E+\3F,12 =1
U
d aT dE dF ()
- ——t v+Fv
dt o dt
aEdu+3/b:L+[aF du IF dv
dt aV dt au d av dt v+Fv
d aT
As u= [auJ E1+(E2+F1)f) +F2‘}2+F{j
- LE j .2
™ = 1+2F1v+le ], i _1
Hence U'i(aT)__a,Z__ ) 1
ou au_Fv+(F2—EGIJ‘32+E29+lE
Letus find V- E, P
M _pi+Gi
v i+Gv=F+GY
)
Hence__ o7 aF IF .
(av u +TV * a0, +§.G.
’ du v v|v+GY
A
S u —l Weget (aT F
av +(F, +G) v +Gy 2, GV
So V=5_[8T) dr
tl v dv
=F +(F .
)16Vt PP
1 GZV +GV —5[E2+2F2V+sz2]

=Gi/'+_1_ .2 )
2sz +G,v +F1——;—E2
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+ . «ieq. we use the condition of : . N
ging the SIET Or & geodesic in the form

oT
| _.__L-B_Y.' =0
du av
ing 11' \ i (‘*\aﬂd(-i')lﬂthe above equamon

1, ]

[ . 12~
F"ﬂ:,'Gt‘ TEG:\ L G'.l ' F‘._ EE:J

"F i 1 \‘\.a ) 1
_(F+Gv) "F\‘*’in _EGI :f"- TE:\‘T;EX} =0

Writing the above equation as a second order differential equation, we have
5. 1
(EG-F%)i + E(GGJ + FG,-2 GF,)y*?

+ %[GzE +3G,F -2 FF, -2 E,Gl¥*

3 %[2 G,E+2F F-3E,F-E GV

oT
v.hxchcanberewnttcnangz:—U——
du dv

= H?[V +Pv>+ Qv? +Rv + 5] =0 where

1

1
P= — (GG, + FG, -2 GF»),
H2 2( 1 27 2

Q=;{1_2 (G,E +3 G,F —2 FF, -2 E;,G)

R=-"L .1 2GE+2FF -3EF-EQG)
H? 2
S:HL (2 EF, —E,E-E/F)

Hence the equation of the geodesic is given by

i+ P+ Qv +Rv+5=0
3

oV ics
Example 1. Prove that the curves of the family Py = constant are geodes!

0 ;
N4 surface with the metric
P —2 wv dudy +2 u* av?, u>0,v>0.
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curface 1f and only
-v} desic at any pomt on he surface ! and )MJ »
/r:cisageo esiC )
u ’ .
U il _y 9° =0
qv Ju
o pas@ parameter, the parametnc representation of the ¢
Choosing [ & %5 »
faken as 4 —ct, V= ct o ;:
Hence W€ have U = 3t V= . ‘
L gefine T |
From the given metric, W€ defin |
¥ 2.2
T’l[v2u2»2uv Gy o+ 2UY ]
2
Using (1) and (2), we obtall
— - 2 35
L)'7:=—vuv+2uv -2t
du
0 .o 36
21; =Vd2—uuv:3(;[
Jv

— =

du

JdT . .36
vzu—uw=cl

T . .
Q,—,— =—uvu t 2uy =t
dv

Hence [ e ==
du

Therefo ¥ . )
re the curve D = ¢ is a geodesic on the surface for all values of ¢

Example 2. i

Cuwespv ; conl;r;)vte. that the .parame.trlc curves on a surface are orthogor &

cunves = ¢ nt is ggoc_iesm provided E is a function of u only and the e
is a geodesic if G is a function of v only

The parametri
i ¢ curves v = constant are all geodesics if and only if

f EE,+FE,-2EF, =0
or all values u and v by Theorem 2(i)

Since the 2 i

Eisa functiorllJ orfa;rl etFC curves are orthogonal, F =0 and conseqUeﬂ“)‘ F

(1) is satisfied for C])ln Y,E, =0 Thus E,, F and F, are all 26059 hat the <™
all u, v. Hence v = constant is a geodesic:

1:("
‘\

»
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4 S i

he parametric curves u = constant are all geodesics if and o]
I only if

f 4 and v by Theorem 2(ii). ALy

\‘\\\

g values©
A\ i1 the previous case F=0and F,=0. Since G is a function ofy op
. F,and G are all zero 5o that the condition (2) s satisfi
l’l,uL-onstamt is a geodesic.

) B

.3 CANONICAL GEODESIC EQUATIONS

Treating the parameter{ to be art?itrary, we hz.we derived the geodesic equations on
the surface in the previous section. Hence in place of 7, we can choose the arc
ength s of the curve measured from a fixed point on it as parameter and obtain the
geodesic equations in a much simpler form and also modify the conditionu U + vV

ly’ G1 =0.
ed. Hence

- ﬂ_ for a curve on a surface to be a geodesic in terms of 5. We shall use prime to
dt

denote differentiation with respect to the parameter s.
Theorem 1. If the arc length s is the parameter of the curve, then the geodesic

equations are
d(oT ) dT
U=—|—|-—=0
ds(au’j du

d(oT) dT
V=_ Ewl e e con
ds(av’) v 0 (D

The equations (1) are called canonical geodesic equations.

Proof. Since the geodesic equations are true for any arbitrary parameter , it
is equally true for the parameter s also. Hence if prime denotes the differentiation
with respect to s, the geodesic equations become

pudfir) ar_ Lt o

“ds\ow ) Ou 2T ds 0w
V=i(a_7_)_a_T_=.1_ﬂ§1 Ne)
ds \ dv’ ov 2T ds 9V
Mg T= % [Ew?+2F u'V +GV"”)
Sinceu’ = fi_u =5 = 2y . m are the directional coefficients ata point on the
s s

Cu
Ve and EI% + 2FIm + G = 1,

dT

1 2 -0 (4
(EI? + 2FIm + Gm’] = 7 % that —

=1
2
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G
e
e ) and (3), we obtain the Canonjgy e

de of (2
: .t hand side © "
equations (1) i ‘
— — only along the curve and it i
Note. One should note that T 5 Sho
’ ’ . . . dT
_v,u andV'. The partial derivativeg
1 dentically for all values of # d\w )
2

d from T before We substitute the values of w'andVinT dy
e

) If the curves on
for a curve {0 be a geo _
urve u = constant to be a geodesic a sufficient o, .

esic, the sufficient condition g V=% it

are calculat .
Theorem 2. . @
sufficient condition
ii) Fora parametric €

is U( =0 and v = constant t0 be a geod .
Proof. (i) Whens jsusedasa parameter, then the second Lemmg . e

% .

1 of 3.2 becomes

a surface are nOt paramietric cyrye,
desic is either U= 0 or y = » they b

/Vl_‘_iz_
Uu + v—ds

Since /. 0 by (4) of the previous theorem. We have
ds

Ui + W =0
«1)

If the curves are not parametric curves, &' # 0 and v’ # 0. This implies from ()
that U and V are not independent. Hence U is a scalar multiple of V and vice-ver
so that either U = 0 or V = 0 is a sufficient condition for a curve to be geodes;; a

(ii) For a curve to be a geodesic on a surface, it should satisfy the folloyi,
canonical equations of Theorem 1. g

d(oT) dT
U=— —_— || -—=
ds (au’] du 0 o

d(dT) dT
V=—|—|-=—=0 A

ds\dv') v
1 If we take the parametric curve u = constant so thatu’ = 0 and ' #0. Using h
(1) implies that V = 0 and conversely. Hence the equation (3) is autometicd)

satisfied for all 5. Hence the condition for u = constant to be a geodesicis U =01

a simil =0 i i o
. ar manner, V = 0 is a sufficient condition for the parametric o
v = constant to be a geodesic.

34 GEODESICS ON SURFACES OF REVOLUTION

Uinfng canonical equations, we sh
surtace of revolution in the followj

Theorem 1. Three types of

. . s oﬁ
all investigate the nature of geodesic®
ng two theorems.
geodesics on a surface of revolutio?

r'=(8(u) cos v, g(u) sin v, f{u)) are
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W kI Wl -ﬁu"'“ S—
'g'ni“" ¥

¢, @) [§ where « and 3 are constants

= X (I W L

R . N

‘ very mertdany = constant |

o ant is a geodesic il and only if'its radius is stationary.

A p:unllc( 1= const

s .
Ulvl.m,f (1) From (1) we have
) (gi) €08 V. &1 (1) Sin v. f1(1)), vy = (—g(u) sin v, g(u) cos v, 0).
ok o ) l ) ) . ,
 =my =g I, F=r;r;=0,G=rr;=_g%Wu) ~(2)
S0 - ¢

2 0, v(1) # 0. Hence by Theorem 2(i) of 3.3, the canonical

-onsider u(?)
+ us consider 1( '
? given cither by U=0o0r V=0.

soodesic t‘dummns 8
‘ without loss of generality, let us find V=0.
p l ~ 72 YIS ~ 2
T=— |Eu"+2Fu'v + Gv7]
)

“

Now

l pd ~2 ’ 2 2
=~ @+ u? + 57

-

Since ¢ and f are functions of « only, we get

aT oT 5

— =0and — =g*V'

dv ov’ &
Hence V= i a—T - a_T = i (g2v/)

ds\ ov’ dv  ds
Thus the canonical . ! e . d 2,
onical geodesic equation V =0 gives d— gvH=0 ..(3)
s

Integrating (3), we have gzv’ =0 ..(4)

Where ¢ i
inCreas(ii 18 afl arbltr.a_ry constaznt. If the sense of the curve is in the direction of v
8,V 15 positive and g% > 0 5o that ¢ can be taken to be a positive constant.

Hence (3) o . . !
FeVOIutign)_ gives the differential equation of the geodesic on the surface of

Le
tus take gz(u) %02, Squaring both sides of (4),
g'a? = o?ds?
= 0’[Edi® +2 F dudy + G av?]

5 =o?[(g2 + D) di® + g*dv*] which gives

8°(8% = ?) g2
S0 th ) dv =a2(812 +f12) du? (5
At we have :
2 2
dv = + g & + fl
- 2 3 du
“’herew . EVg ~«
€ haye )
Move on the taken both the signs, since the curve can change direction as u, v

Curve, Integrating (4),

S
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