._‘ "’.
Ale !

The First Fundamental Form and

Local Intrinsic Properties of
A Surface

21 INTRODUCTION

As in the case of a space curve introduced either as the intersection of two
surfaces or with the parametric coordinates, we shall introduce surfaces in E;
either implicitly by an equation of the type F(x, y, z) = 0 or parametrically by
expressing x, y, z in terms of two parameters u, v varying over a domain. We shall
make these two notions more explicit before defining a surface locally as
equivalence class of surfaces by a suitable equivalence relation.

After defining the surface locally, we classify the points on a surface as
ordinary points and singular points. Then we take up for study curves on surfaces
and explain how the parametric curves on surfaces help us to study the properties
of surfaces. Then with the help of the tangent plane at a point P and the surface
normal at P, we introduce a coordinate system at every point of the surface. This
system (r,, r,, N) at any point on the surface is analogous to the moving triad
(t, n, b) at a point on the space curve. After introducing certain standard surfaces
which we often come across in applications, we shall introduce a certain quadratic
differential form on a surface and direction coefficients. This quadratic form is
called the first fundamental form which enables us to study the local intrinsic
properties of surfaces. We shall conclude this chaptef with a brief study of the
family of curves on surfaces and isometric transformations.

2.2 DEFINITION OF A SURFACE

We give the two different definitions of a surface and illustrate them with some
simple examples.

Definition 1. A surface is the locus of a point P(x, y, z) in E, satisfying some
restrictions on x, y, z which is expressed by a relation of the type F(x, y, z) = 0.
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Definition 4. A parametric transformation is said to be proper if

(i) ¢and yare single valued functions

(. ¥)
d(u,v)
Note. Let D’ be the domain of «’, v’ corresponding to the domain D of the u,
v plane. The conditions in the above definition are the necessary and sufﬁment
conditions for the existence of the inverse in the neighbourhood of any point o d
which means that the transformation is locally one to one. However it should be
noted that the transformation ¢, y may not have the inverse on the whole of D.

and (i) The Jacobian # 0 in some domain D.

2.3 NATURE OF POINTS ON A SURFACE

To describe the nature of points on a surface, we introduce the following notation.

Letr = (x, y, z) be the position vector of a point on the surface. Since x, y, z are
continuous functions of parameters u, v possessing partial derivatives of required
order, we can take r = r(u, v) as the paramatric equation of the surface. If the
suffixes 1 and 2 are used for partial derivatives of r with respect to u and v

) d
respectively,let 1| = = andr, = E (1)
du dv
and . _82r . o’r - o°r " _82r
U0 v M vau’ B 92
Since r possesses continuous partial derivatives, we have rj, =r,,.
Since r = (x, y, z), we can express r,, r, componentwise as
dx dy 0z x )
= _7 ——7 - - b b Z
Yl 0w’ 9u” du b Ie
dx dy 0Jz
r,= P =W ] ) Z
2 [av 3 oy Pt @)

and we have similar expressions for ry,, r|;, T}, and r,

Definition 1. Ifr; Xr,#0ata point on a surface, then the point is called an
ordinary point. A point which is not an ordinary point is called a singularity.

From the very definition of an ordinary point, we note the following properties
of a surface.

(1) using (2), we have
T X0y =812 - 2,y)) +J(21x, — X129) + k(xy, - y1x) ..(3)

T X1, #0 means that one of the coefficients in (3) is different from zero. That
IS at least one of the members

0122 = 2192), (@1%p = X129), (X, = Y1 x7) 20 (D)
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determined by X, > 2 in the neighbourhood of an ordinary point Cugy
(iv) The points where

If the rank of M is 1, then every determinant minor of order two of

. . . 0 i
This implies M,

(y12—21Y2): (2%, —X122); (xly? = yl_xg) are all zero so thatr, xr
point where the rank of M 1sone 1s a singular point.

When the rank of M 1s Zero, then all the determinant minors of org
sero. This implies as in the previous caser) X I, = 0 at these points o t;rlm;
where the rank of M is Z€ro is a singular point. i

Note. When gnly one d.eterminant minor of M is zero, we canny
that the point is a singular point. ‘

We shall illustrate the above properties by the following examples

Example 1. Consider the surface given parametrically by

the rank of M is 1 or zero are singular "
: ' Ints,

2501,

x=u+v,y=u+v,z-_—uv.

Now Qi:l,gizl,—alz,a—yzla—zzvgz—zu
du dv du v ou v
HCHCC x1y2 bl yl.X2 = 0 but X122 = X2zl =uU-—-Vv# 0
Thu§ the rank of-M is 2 at every point of the surface so thatever P
surface is an ordinary point.

_(V) A proper parametric transformation transforms an ordinary
ordinary point.

Let r = r(u, v) be the equation of the surface. ,
andlet u’ = ¢(u, v), v’ = y(u, v) be the given proper paramelrc
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or _or o oy
Now u ow u v ou
_ar oo oy
and sO T du 9V du
or _ dr 0¢ +§r_a_w
Similarly o ov

v o v v I
or or ar or

X =0, == X == =0, being parallel vectors
v’ v

ou’  odu’

Since

or, v _Or 3rld dy ay 3
ou v ou v

or dr _or dr 9(¢,y)
SRS du 8 v o 8 v’ 9d(u,v)

Since the given parametric transformation is proper,

94, y) #0.
a(u, v)
Hence L X ol #0implies _r’ X a‘r/ #0. Thatisr| xr, %0, proving that an
u dv ou’  dy

ordinary point is invariant after proper parametric transformation.
Note 1. Since r; x r,# 0 at an ordinary point, r,

Due to some geometrical nature of the surface, some singularities continue to
be singularities, whatever may be the parametric representations. Such
singularities are called essential singularities. There are other singularities
depending upon the choice of parametric representation. Singularities of this type
are called artificial singularities.

Note 2. To find the nature of a point on the surface, we use either the matrix
M or ry x r,. We shall illustrate the essential and artificial singularities in the
following examples.

Example

X1, =0 at a singularity.

2. Consider the circular cone represented by
X=usin 0cos v,y =usin asin v, z=u cos o

where a is the semivertical angle of the cone with the vertex 0 as origin and
OP = u, P any point on the cone.

We show that the vertex of the cone is an essential singularity. Since u and v
are parameters, we have

singcosv sinasinv cos o
M=

—usingsiny usin o cos v 0
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have many representations of the same surface by considenng different 5.\5“7*:
overlapping parts (8)), each part is given by a parametric equation of clast” \
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Definition 2. Let R an R’ be two representations of class ¥ of
Let (§)) and (S)) be two different systems of overlapping part

the sur
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corresponding to R and g’

s CER By e hen they id 1o be ¢quivalent, if the composite
family of parts {S;, S} satisfy (he condition
portion of the overl

w5 . lying in the common
T «"1 ¢ ' WO parts, the Change of Parameter of P considered as a
point of §; (o the parameter of the gy POINt considere as apointof S/ is given
by a proper parametric transformatiop of class r. Thatis if p g a point injthe place
foverlap, the change of arameter N . o

0 p e p : from S;to S/ at the PoINt P is given by a proper
parametric transformation of class r.

Theorem. The notjop of r-
equivalence relation.

Proof. L

LetR, R’ and R” be any three repre surface S and let
them be r-equivalent suchthatR ~ R’ and r’ - R”. We shall show thatR ~ R” Since
R and R’ are €quivalent, there exists a Proper parametric transformation ¢ at the
common point P, in the overlap of the family {S; S/}. Since R’ ~ R”  the change of
parameter of a point in the overlap of S/ and S is given by a proper parametric
transformation v from Si to S;”. Since ¢ and W are locally One-to-one, wog is
locally one-to-one transformation giving the change of parameter from § jt0 8.
Hence the Iepresentation R and

R” are equivalent so that the relation of
equivalence of class r of surfaces is transitive,

Since the notion of the relation of equivalence of classrisreflexive, symmetric
and transitive, it is an equivalence

relation which completes the proof of the
theorem.

Sentations of clasg rof a

This equivalence relation introduces a

partition into the family of surfaces of
§ r splitting them into mutuall

y disjoint equivalence classes, each clasg
containing the surface equivalent to one another in the above equivalence relation.

This leads to the formal definition of a surface as follows.

Definition 3. A surface § of class r in E

3 1S an r-equivalence class of
répresentations.

Thus a surface consists of different overlapping portions related to one ancither
by proper parametric transformations and all other surfaces related to the given
one by the equivalence relation of class r. We make a study of local properties

without investigating the extent of the region of the surface in which the local
Properties are true.
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equation of the normal at P.
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Since the parametric transformation is proper,

_ 9@,y
T 9w, v)

#0

As in the case (V) of 2.3, we have

_85)(?_1: o, v) a_rx or
du Odv d(u,v) \du’ 9V
Using H and H' in the above step, we get

_0@',Y)

HN =
d(u, v)

H'N

Since H and H’ are always positive, N and N’ are of the same sign if J > 0 and
are of opposite sign if J < 0. Since J is a continuous function of the parameter u, v
in the whole domain and J does not vanish in D, J retains the same sign in D. This
proves that N and N” have the same sign.
Example 1. Obtain the surface equation of sphere and find the singularities,
parametric curves, tangent plane at a point and the surface normal.

A sphere is a surface of revolution of a semi-circle lying in the XOZ plane
about the z-axis. The curve meets the axis of revolution in two points. If P is any
point on the circle lying in the XOZ plane, its equation can be taken as

x=asinu,y=0,z=acosu

where u is the angle made by OP with the z-axis. u is called the co-latitude of the
point P. After rotation through an angle v about z-axis, let PM be perpendicular on

b 4
P(x, y, 2)
u
0 Y
"
M(x, y. 0)

Fig.7
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where u and v arc parameters an@ "J ‘é u
(i) We shall find the singulanties L
oW r :(acosucosx.aco:u sin V. S
- r; —(—gsinusiny.d sin M4 COS V. 07

Hence the matrix

a cos U Cos v
M=

—-a Sin u Sil’l V

gcosusiny —asmnu

asin u cos v 0

Aty =0and u=m althe three determinant minors of M are zero g 3.
‘= 7 are singular points. Since these singulars...

rank of M is zero. Thusu=0,u = o . i
due to the choice of parameters, they are artificial singulanties. Tps @

conclusion may be arrived at by considering r; X r- also.

(ii) Parametric curves. First let us find the parametr.ic curves of the o
4 = constant. When the colatitude u is a constant. @ cOS i 18 a constant. Let s
Then z = A is a plane parallel to the XOY-plane. If P is the point of intersecr -
this plane and the sphere where u is constant, then the locus of Pisasmal ;-
Hence the parametric curves of the systemu = constant 1s a system of paralle -
circles which are called parallels.

When the longitude v = constant, the plane ZOM is fixed and the point
v is constant is the intersection of the sphere and this plane passing throu
centre of the sphere. Hence the locus of P is a great circle. Thus the pare
curves of the system v = constant is a system of great circles called mendiz

From (i) r;-r, = 0 so that the parametric curves are orthogonal.
(iii) Now r; Xr, = a2(i sin’

1 cos v+ sin’u sin v + k sin u cos )
The equation of the tangent plane is (R —r)-(r, X 1,) =0
In the cartesian form, the above equation becomes
(X-x)sinucosv+(Y-y)sinusinv+ (Z-2)cosv=>0.
Now  H=|r xr,|=d’sinu

Hence N = AR

=(Sinu cos v, sin u sin v, cos u) = —T
a

w 1 P A “\“{
here r is the position vector of 4 point on the surface so that the surface!
the outward drawn normaj.
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Definition 1. A surface generated by the rotation of a plane curve abou
axis in its plane is called a surface of revolution. ‘

Theorem 1. The position vector of any point on the surface of revoll
generated by the curve [g(u), o, f(x)] in the XOZ plane is

r =[g(u) cos v, g(u) sin v, f(w)]
where v is the angle of rotation about the z-axis.

i
Proof. Let us take the z-axis as the axis of rotation and let [g(4), o,fé ‘
the parametric Iepresentation of the generating curve in the XOZ planc. it

© curve. Then its x-coordinate g(u) gives the distance ©
the z-axis. When th 81) &

; W
; sircie
© Curve revolves about the z-axis, A traces out "

A p diclar to XQy anq XOZ planes. Then AN = PV~
If (x, Y,

2) are the Coordinates f P, then we have

x=OMcosv=PNcqsv=g(u)cosv
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¢ Firs :

y=OMsinyv=PNsinv=g(u)sinv
7= PM = f(u)
Hence the position vector of a point P on the surface is
r=|gu) cos v, g(u) sin v, f(u))
where the domain of (&, v) 18 0 < v < 27 with a suitable range for u which depends
on the surface.
Next we shall find the parametric curves.
Let P be a point on the surface with u = constant so that g(u) is also a constant.
Then the locus of the points like P is a circle with radius g(u) for a complete

rotation as v arises from 0 to 2. Thus the parametric curves u = constant are circles
parallel to the XOY plane as in the case of sphere we call them as parallels.

Letv = constant. Since v gives the angle of the plane of rotation in this position,
the parametric curves are the curves of intersection of this plane of rotation with
the surface. We call these curves meridians.

Further  r;=(g" cosv, g sinv,f")
r,=(-gsinv,gcosv,0)

and r;-r, =0 so that the parametric curves are orthogonal. To find the direction of
the normal, we find

r) X, =i(-gf’ cos v) —j(f'g sinv) + kgg’
and [y xr =g’ (7 + g%

_nXr, (=f'cosv,—fsinv,g")
H 'f12+g12

Note 1. By specialising the curve to be a circle in the XOZ plane, we get the
representation of a point on the sphere. The parametric representation of a point on
the circle is (a sin u, 0, a cos u) so that g(u) = a sin u, and f(u) = a cos u. Hence the
representation of a point on the sphere is

Hence N

r = (a sin 4 cos v, a sin u sin v, a cos u)
Note 2. In the case of the cone, the curve in the XOZ plane is a generator. The
parametric representation of a point on the generator is (i, 0, u cot @).
Hence taking g(u) = u and f(u) = u cot @, we obtain the representation of a
point on the cone as,

r = (ucos v, u sin v, u cot Q)

Another important surface is anchor ring or torus which is defined as

Definition 2. The anchor ring is a surface generated by rotating a circle of
radius a about a line in its plane at a distance b > a from its centre.

This circle does not meet the axis of rotation, whereas in the case of a sphere,
the curve is a semi-circle meeting the axis of rotation at two points.
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Further T = (—a SIN WU COSV, —d SIN U SIN V, @ COS U)
.‘.‘ v i
r. =(=(b+acosu)sinv, (b+acosujcosv,0)
Gince Iy M = 0, the parametric curves are orthogonal.
] -
r.Ar, =—(b+acosu)lacosucosv,acosusinv,asinul
Y]

Since b > a, the above vector is negative for the range of values of u and v so
that the normal is directed inside the anchor ring, since |y # r,| is always positive.

Note. The coordinates of a point A on the generating circle in XOZ plane is
(b + acos u, 0, asin u). Hence taking g(u) = b + a cos u, f(u) = a sin u in
Theorem 1, we can obtain the representation of a point on an anchor ring.

2.8 -HELICOIDS

In the above examples, we considered surfaces obtained only by rotation about an
axis in its plane such as spheres, cone and anchor ring. But there are surfaces which
are generated not only by rotation alone but by a rotation followed by a translation.
Such a motion is called a screw motion. The simplest case of a screw motion is the
motion of the x-axis through a rotation about the z-axis and translation in the
positive direction of the z-axis. Usually we take the angle v through which the
positive x-axis rotated is proportional to the distance A in the upward direction so

that — is constant. The surface generated by the screw motion of the x-axis about
v

the z-axis is called a right helicoid. So we shall derive the equation of the right
helicoid before taking up the general case.

(i) Representation of a right helicoid. This is the helicoid generated by a
straight line which meets the axis at right angles. If we take the x-axis as the
generating line, it rotates about the z-axis and moves upwards. Let O’P be the
translated position of the x-axis after rotating through an anglev. Let (x, y, z) be the
coordinates of P. Draw PM perpendicular to the XOY plane and let OM = u. Then
X=ucosv,y=usinv, and z = PM.

By assumption the distance PM = z translated by the x-axis is proportional to

o . Z
the angle v of rotation. Taking the constant of proportionality to be a, let M

Hence the position vector of any point on the right helicoid is
r = (u cos v, usinv, av)

Now r, = (cos v, sin v, 0), r, = (—u sin v, u cos v, a)

Since r,-r, = 0, the parametric curves are orthogonal. When u = constant ¢
(say), then the equation of the helicoid becomes r = (c cos v, ¢ sin v, av) which are
circular helices on the surface. The parametric curves v = constant are the
generators at the constant distance from the XOY plane.

) 2, 2
Further r,; Xr,=(asinv,—acosv,u) and H = \/a +u

1 .
Hence the unit normal N = ————= (a sinv, —acos v, u)

a’ +u
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r, = (g'(w) cos Vs g'(w) sinv, f'(u))

ince the sect1o

the z-axis throug

u) +av)

Now
r; == g(u) sin v, g(u) cos v, a)

Further 11, =f (W) a.
Hence when the parametric curves are orthogqnal, then either I =g,
a=0.1ff/(u) = 0,f(u) is constant so that the surface is a right helicoid, ¢ az()y,

do not have screw motion and we have only rotation about z-axis g, ha

helicoid is a surface of revolution.

When v = constant, the parametric curves are the various positions of,
generating curve on the plane of rotati‘on. When u = cgnstant,'it follows fron
equation of the helicoid, the parametric curves are helices on the surfce,

2.9 METRIC ON A SURFACE—THE FIRST
FUNDAMENTAL FORM

Analogous to the arcual length ds” in the case of a space curve, we shall introdu
a metric on a surface called the first fundamental form.

Let r = r(u, v) be the given surface. Let the parameters u, v be functionsd
single parameter ¢. Then r = r[u(z), v(¢)] is a function of a single variable laﬁf
hence it represents a curve on the surface with  as parameter. The arc Jengh!
terms of the parameter ¢ is given by

(.d_s)z _ dr dl'_ dar 2 |
dt) " ar @ \dr

it £=ﬂ@ Jr dv

dt Qudt 9y ar
Using (2) in (1), we get

(é)z =(r 2 dv)z
dt ldt 2 dr




_

The First Fundamental Form and Local Intrinsic Properties of A Surface 119
( du Y du dv dv\?
=r; T | — | +2r ' — —+r, 1, — ..(3)
o dr dt dr \dt
Let E:rl~r1:rf.F:rl'r2 andG:rz-r2=r§ ..(4)

Using the above notation, (3) can be rewritten in terms of the differentials as
ds®* = Edu® + 2F du dv + G dv* (5
Definition 1. The differential quadratic form (5) is called the first
fundamental form or metric on the surface. It is usually denoted by 1.

Note 1. The expression for ds* in (5) 1s independent of ¢ and so it can be
considered as the infinitesimal distance between two points with parameters (u, v)
and (u + du, v + dv) on the surface.

Let P and Q be two neighbouring points on the surface with position vectors r
and r + dr corresponding to the parameters u, v and u + du, v + dv.

Now dr = illdu+ kdv:rldu+r2a’v (1)
du v

Since P and Q are two neighbouring points, the length ds of the element of the arc
joining them is equal to |dr|. Using (1), we get

ds® = dr-dr = dr? = (r,du + r,dv)
= rdu’ + 2r, -y du dv + ridv?
=E du® + 2F du dv + G dv*

Thus if ds denotes the length of the elementary arc joining (u, v) and
(u +du, v + dv) lying on the surface, then

ds* =E du* + 2F du dv + G dv? (2)
2 2 2
From (2), we get (é) =E (ﬂ) +2F ﬂ Q +G (ﬂ) .
dt dt dt dt dt
, 2 7
Hence S:J E(d—u) +2Fﬂﬂ+6(d—‘)) dt
1o dt dt dt dt

Note 2. ds is no longer a perfect differential in the sense that there exists no
function ¢(u, v) such that ds = d¢.

Note 3. Since the square root of the first fundamental form gives the length
Idrl, it is called the metric of the surface. Though the metric is usually employed
for calculation of the arc length of a curve on the surface, the coefficients E, F and
G are used to study many important properties of the surfaces. They are functions
of parameters u, v and called first fundamental coefficients.

Note 4. On the parametric curve v = constant, we have dv = 0 and the metric

reduces to ds” = E du®. In a similar manner, on the parametric curve u = constant,
ds* = G g2
S =G dv*,
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We have the vector area of the parallelogram is r; du x r, dv.
so that dS=|ridux r,dv|=|r; Xr,| dudv=H du dv.
This proves that H du dv gives the elementary area dS on a surface.

Example 1. Find E, F, G and H for the paraboloid x = u, y=v, z = R
Any point on the paraboloid has position vector r = (u, v, " — 1,
Hence r, =(1,0,2u),and r, = (0, 1, -2v).
E =r; 1y =1+4u F=r r,=—4u, G=ryr,=1+47~

Further ¥, X1, =(=2u,+2v, 1).

Hence H =|r;xr,| = 4u® + 4v® +1, which is also equalto \/EG — F? .

Example 2. Calculate the first fundmental coefficients and the area of the anchor
ring corresponding to the domain 0 <u <27mand 0<v <27

The position vector of any point on the anchor ring is
r={(b+acosu)cosv,(b+acosu)sinv,asin u)
Hence r,={-asinucosv,—asinusinv, acos u)
r, = {—(b+acosu)sinv, (b+acosu)cosv,0)
Now E=rf=r,-r =a’sin’u (cos’ v + sin®v) + a®cos? v = a° (1)
..(2)
G—rz—r-r—(b+ 2 sin® b 2 cos? 3
=r, =y Iy= acosu) sin“v+(b+acosu) cos’v ..»3)
Hence we have G = (b + a cos u)®

(1), (2) and (3) give the first fundamental coefficients.
To find the area, let us find H.

As we have already noted F=r,-1,=0

H*=EG-F*=d*(b+acosu)’sothat H=a(b+acosu) ..(4)

By Theorem 4, the elementary area of the surface is H du dv. Using (4), the
entire surface area is given by

21 p2W 27 p2W
S=J' Hdudv=j j a(b + a cos ) dudv
0 0 0 0

2r 2
=27raj (b+acosu)du=4mn*ab
0

210 DIRECTION COEFFICIENTS ON A SURFACE

In the case of curves in space, we are able to obtain a moving triad of mutually
Perpendicular unit vectors (t, n, b) with the help of which we are able to express
any vector at a point on the curve linearly in terms of (t, n, b). Though we cannot
have an exact analogue of (t, n, b) at a point on the surface, we are trying to have
Something similar to this triad at any point on the surface. This leads to the notion
of tangential and normal components of a vector at a point P on the surface.



1 XT,#0, neitherr
sothatr,andr

2 are linearly independent. Further N ¢
ForifN =ar,,then N-N =ar;-N=
1 = 0. Thus at any point P on the surface,
vectors N, ry, r,,

eitherr, orr,,

Hence every vector ¢ through P can be €Xpressed Uniqye;
combination of three vectorsN, r, and r,. Thus there exist Unique Soa as 5 ling
Ksuchthat g=g N 4+ Ar, + ur, s g

Thus (1) expresses

"%

tor ¢ € Sum of twq Vectorg N o

10 the surface ang Ar, + Mr; lying in the tangent plane g the Surface atnp Doy,
On taking dot Product with N on both sides of (D), '

We obtaing N =a,N-N=q_ asN-r; =N.r, =
component of @ . From this it is easily

any vector through P as th

= Ar; +
ctor a at P are (), M) so that we write a
a=@A,w- (A, ) is a direction op the surface at p
Tepresent a vector at P g

he definition, we nott
Ifa

= (4, 1) is tangentja] Vector at P on a surface, then its magnitude
la| = BA* + 2F 2 4 G>)'"2,
From the definition, we have q

=Ar; + ur,.
Hence laf =q.q = (Ar, + Hr) - (Ar, + ur,)
=Xr? + 2ty Ap+r2 12
Since

E=rf,F=r1-r2andG=r22,We get
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= of = B+ 2 FAu Gy*) which gives

N T (1)

Note. Theabove formula expresses the magnitude of the tangential vector in

rerms Of the components and the first fundamental coefficients.

Definition 2. Let b be the unit vector along the tangential vector a at P.Let
the components of b be (I, m) so that b = Ir| + mr,. The corr}ponents (l3 m) of the
unit vector b at P along the direction a are called the direction coefficients of a.
These direction coefficients are written as ([, m). From the definition of (I, m)
(-1,-m) gives the direction opposite to (I, m).

Since b =11, +mryand |b| =1, we have from the property following Definition 1,

EP+2Flm+Gm*=1 (2

Hence the direction coefficients satisfy the above identity.

Note 1. The direction coefficients (I, m) are analogous to the direction
cosines (I, m, n) satisfying the identity 1> + m* +n’ = 1 in the Cartesian geometry of
three dimensions.

Note 2. In the case of the plane with rectangular cartesian coordinates, a
direction is determined by the angle ymade by the line with the positive direction
of the x-axis. The direction coefficients are cos V, sin y. The metric becomes
di* + dy’® and the above identity (2) becomes cos? v+ sin’ v=1

We use the following convention in measuring the angle between two
tangential directions at the same point. The sense of rotation of the angles in the
tangent plane is from the direction r, to that of r, through angle between Oand 7
which means the smaller of the angle between r, and r,. This is also the positive
sense of rotation about N.

Theorem 1. If (I, m) and (', m’) are the direction coefficients of two
directions at a point P on the surface and 01s the angle between the two direction at
P, then

(i) cos @=Ell' + F(Im' + I'm) + Gmm’

(i) sin 0= H(Im' - I'm)

Proof. 1If (I, m) and (I, m’) are the direction coefficients of the two directions
at the same point P on the surface r = r(u, v), then the corresponding unit vectors

along these directions at P are ‘

a=Ir,+mry, a=Ir+mr (1)

Let 6 be the angle between the two directions. Measuring 6 from the direction
I tor, through the smaller angle, we have
a-a’=cos f,a xa’ =sin ON (2)
Now  g.q'= (Ir, + mry)-(I'r) + m'ry)
=2 + (Im' +U'm) xy- vy + mm’ ry

=Ell' + F(lm' + I'm) + Gmm’ (3
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Differential Geomey.

H\|m| N

Ji‘_ (El + Fm), sin 6, = JE

cos 6, = JE
: .« the angle between (I, m) apq
a similar manner, if 6,15 the Pargy,

: ) corresponding t0 ¥

direction (0, Tc

. H|l|
1 s fs —
- (FI+Gm) G

cos 6, = JE

If (', m) are the direction coefficients of a lipe Which
makeg,
d

In By
= constant, we have L

Theorem 2.

angle 7 with the line whose direction coefficients are (I, m), thep
2

’ 1 ':i El+F
l=_ﬁ(F1+Gm),m 7 ¢ m)

Proof. If (I, m) and (', m’) are two directions at a point on the -
by Theorem 1, we have &
cos @=Ell’ + F(Im’ + I'm) + Gmm'’

he

sin 6 = H(Im" - I'm)
When 6= 121-, we have from (1)
Ell + F(Im' + I'm)+ Gmm’ =0
That is I'(El + Fm) + m'(Fl + Gm) =0
The above equation is satisfied for
I =-a(Fl+ Gm), m’ = a(El + Fm)

for some scalar ¢
We shall find o with the help of (2).

n
When 6= " we have from (2), H(Im' - I'm) =1

Using (3) in (4), we obtain
Hl[o(El + Fm)] + Hm[o(Fl + Gm)] =1
which gives % = H[E? + 2 Fml + Gm?]
Since (I, m) are direction coefficients, we have
EP + 2Fml + Gm*= 1 so that o= —;;

Using this value of ¢ in (3), we obtain
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Thi pirst Fun

1
/= _,1~ (Fl + Gm), m' = — (El+ Fm)
H H
(1, m) are the direction coefficients of the tangential direction to the curve

. du dv
at a point on the surface r = r(u, v), then [= — m= —.
ds ds

(v) If

u = u(l)‘ V= V(I)

¢ unit tangent vector at any point P on the curve is

Th
dr Or du Or dv du dv
t=— =——+ =l'1 ——+l'2——
ds Ou ds Ov ds ds ds
Since o represents the unit tangent vector at P along the tangential direction
s
. du dv) . . .
to the curve, 1ts components " . give the direction coefficients of the
s ds
; d
tangent at P on the surface. Hence [ = _u, m= ik )
ds ds
; du dv ) o '
As (du, dv) are proportional to = ) (du, dv) give the direction ratios of
s ds

the tangential direction to the curve at P.
Note. Using (iii), the angle between the tangential directions (du, dv) and
(6u, 6v) is given by
<in 0 = H (du 8v — dv 6u)
JEd +2Fdudv+Gav* JESu* +2F8udv+ G5v?

Edu5u+F(du5v+5udv)+de5v
JEdu? +2Fdudv+Gadv’ JESW +2F8udv + GV

(vi) If the equation of the curve on the surfacer = r (1, v) is given in the implicit
form ¢ (u, v) = 0, then (- ¢,, ¢,) are the direction ratios of the tangent at any point
on the curve.

Differentiating the equation of the curve o(u,v) =0, we obtain

a¢ a¢ du ¢2
% du + — dv=0sothat — =———
du dv dv ¢,
Henc.e (du, dv) are proportional to (= §2, ¢,). Using (v), we see that (- ¢ 9
are the direction ratios of the tangent to the curve.

Example 1. Find the parametric directions and the angle between the parametric
Curves,

cos 0 =

di F(?r the parametric curve v = constant, the parametric direction has the
Irection ratio (du, 0) by (v),
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Example 9. For the cone wil :
i the same * all points on the generating line £y

point on the coné with semi-vertical angle ¢
/and tr:

r=(ucosv, sin v, u cot o)

Now let us find the fundamental coefficients.

r, = (cosV, sinv, €
E=rm =17 cotor= cosec’a, F=0

ot @), Tp = (= usin v, U Cos Y, 0)

— 2 1
G=ryT=U (sm2 v+ cos2 V)= u2.

3 2_.2 2

H*=EG-F"=u cosec o so that H = u cosec &
Now rlxr2=(—ucosvcota,—usinvcota u)

Hence N= nXh (-c i

1 0s v COS O, — sin v €os &, sin¢Y)
Thus the surfac
en is i
i e omal N is independent of u. This implies that the 181"
e  at all points along a generating line |
e ’ . . . '

For a right helicoid given by (u cosv, U sinv, @V

(rl r N) ]
,T,,N)ata pointon the surf
surface and the direction of the parametric curves™

)y determ”

the direction making angle T atapoi
ks point on the surface with the parae™ ’

v = constant.

Now an 1
y point on :
the right helicoid is r = (4 cOS V, 4 sin v, av)

Hence
l‘ -
1 =(cos v, si
v,sinv, 0),r, = (- usinv, ucosV a)
] .

E=r
1’ = =
=1L,F=0,G=ryr,=1 +@
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5 2_ 2 [
H*=EG-F?*=, +a2SOthatH= uz+a2

Again T XTIy =(asinv,—acosv, y)

_—.‘—z » u
Now H oS-, ¥
u“ +q 2 2 2 2
u® +q u“ +gq

Let the components of N be (N1, Ny, N).

Using (ii), the direction coefficients of the parametric curves are

(% Oj =(1,0) and (0, %) = [0, +]

G

If yis the angle made by N with the Z-axis, then cos y= N, = %

u? + q?
If (', m") is the direction coefficient orthogonal to the parametric direction

v = constant, then by Theoem 2 we have I’ = — %(Fl +Gm), m’ = i(El + Fm).
H

Substituting for I, m, E, F, G and H in the above step, we have I = and

1 - _ . :
ﬁ which is the direction of the parametric system u = constant. This
u +a

is what we expect, since the parametric curves are orthogonal.

m =

211 FAMILIES OF CURVES

So far, we were concerned with a single curve lying on a surface and associated
tangential direction. Now we shall introduce families of curves on a surface and
study some basic properties of such families.

Definition 1. Let ¢(u, v) be a single valued function of u, v possessing
continuous partial derivatives ¢;, ¢, which do not vanish toggther. Then the
implicit equation ®(u, v) = c where c is a real parameter gives a family of curves on
the surface r = r(u, v). o

For different values of ¢, we get different curves of the farr}lly lying on the
surfaces. From the very definition, we note the following properties.

(i) Through every point (u, v) of the surface, there passes one and only one

member of the family. .

Let ¢(up, vg) = ¢, where (up, vo) is any point on the Sufface-Hl;‘;i';
¢ (u v)i cois a member of the family passing through (ug, ‘(’jo)- Ly ee
throl’lgh evei‘y point (i, Vo) on the surface, there passes one and only
member of the family. ' ‘ .

(i) As noted in (vi) of 2.10, the direction ratios of the tangent to the curve ¢

the family at (u, v) is (- ¢, ¢1)-
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