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XYZ a3

Let us denote b =
YH="aBC

Operating with Adi = A on both sides of (5), we have
s

3
d Ad B3 Co)\(i Y .., z
A—ubl= |2 2+ 22 2 —a), = -b), —(c C)j
ds[ﬂ] [x8x+y8y+zaz)( (a"~a) B c

A
So Au'b + Ap (- tn) = (3x (d'- a), 3y (b’ - b), cz(c” - ¢)) (6)
From equation (7) of the theorem, we have
3 p2 A2
Pkn+axt =an=-|2 B C ()
x>y oz

Taking scalar product of (6) and (7), we obtain

Artu = 32A—2(a’ ~a)
e

Substituting the value of it and simplifying, we get.

- 3,33

3ABC « A’
Bt =N i 4)
T

Substituting the values of A and «, we get

A2
. 3y Zx—z(a =)
= 6

ABC ,
Z%m -a)

1.10. CONTACT BETWEEN CURVES AND SURFACES

Let ybe a curver(u) = { f(u), g(u), h(u)} and let S be a surface F(x, y, z) = 0‘. Letus
assume that the curve y and the surface S are of high class in the sense that r(x) and
F(x, y, z) have continuous derivatives of sufficiently high order. From the equation
of the curve, we take x =f(u), y = g(u), 2= h(u). If this point lies on the surface, we
have F(f(u), g(u), h(u)) = 0 which is an equation in u giving the points of
intersection of the curve and the surface. Depending upon the nature of the roots of
the equation, we shall define the contact between curves and surfaces as follows.

Let u, be one such zero of F(u) = 0. Since F(u) possesses the derivatives of
sufficiently high order, F(u) has the following power series representation in the
neighbourhood of u = u,.
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(u—ug) (u—uy)?
1|

F(u)= Fluy) + F'(ug) + - > F gy + . 4

W ) prgyy + O = ug)™!

n!

3 “f
2 '’

" h Y73 h hn n
F(H) = hF (“0) + —2—'F (MO) + ?"F (uO) + ...+ F F( )(uo) +O(hn+l)

Definition 1. If F'(u,) # O, then uo.is a si.mple Zero of F(y) = 0
curve y and the surface S is said to have simple intersection at F(uy), * They the
Definition 2. If F'(ug) = 0 and F"(ug) # 0, u is a double 5,
F(u) is of second order of h. Then the curve yand § are said g 1,
contact.
Definition 3. If F'(ug) = F"(up) =0 and F”(up) 20, y and § 4
three point contact at u = u, under these conditions i is a triple zer
In general if F'(up) = F”(up) = ... = F""Y(ug) = 0 and F® ()2
and the surface S are said to have n point contact at u = y,,

O of

]
4 d

© Poi

€ said ¢ e
Oof Fyy

0, the cul’Ve?

Theorem 1. The conditions of a surface having n point contact wiyy
curve ¥ are invariant over a change of parameter. ¢

Proof. Let u = ¢(¢) be the given parametric transformatj
regular, we have ¢® (1) # 0 fork > 1. Corresponding to the point
ug= Mty) atr =1,

Now F(u) = F(¢(2)) = f(r) where f is a function of 7 only.

On. Since it
U= Ug, we hay

- d d .
f@ = Z F(u) = E F(u)'z =F'(u) ¢(1) )
Fy = %[F'(u)gb(t)] = FWd®F + F'a) @) 0

If F'(u) =0, then f(1)=0as ¢(r) # 0

If F'(u) = 0 and F”/(u) # 0, then from (1) and (2) we get f (r) =0 and f()#0
since d)(t), éb(t) #0.
Thus if the surface § given by F(u) has two point contact with the curve /¢
r(up), then the surface S given by £(z) has two point contact with yat r(¢(ig)
Differentiating (2) again we get
. .. L
F®=F"w) [¢®F +3F"(w) ¢@)d@) + F'(u) 9()
, ’ . - - 0 Jﬂ\‘
If F'(u) = 0, F"(u) = 0 and F""(u) # 0, then from (3) f(®) =0 f(0=""

v § it ot
f ) #0as ¢(r) is regular. Hence the surface S given by f(z) has three point ¢

. ) ; _ ” ) =
with the curve yat r[¢(t,)]. Proceeding like this, if F'(1) = F ”(“)/ »
n- ; . _ fn=o(t) =

F""u)= 0 and F™(u) # 0 at u = Uy, then f ()= f(1) = =f" 1

il
% - tact W'
£ @ # 0 at r[¢(p)). Thus the surface S given by f(#) has n point co"

»r
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r(¢(t)], provided the surface S given by F(u) has n point contact with yat r(ug).
Thus a surface having n point contact with the curve ¥ is invariant over a change of
parameter. Hence we conclude that the property of the curve having n-point
contact with S is a property of yin the sense that any path which represents ywill
have this property.

Theorem 2. The osculating plane at any point P has three point contact with
the curve at P

Proof. Let P be any point on the curve and let the arc length be measured

from P so thats = 0 at P and let the equation of the curve be r = r(s). We know that
the osculating plane at P is

[r(s) = (0), r'(0), r"(0)] = 0
and let F(s) = [r(s) - r(0), r'(0), r’(0)] (1)

We shall show that F'(s) = F”(s) = 0 and F"”(s) # 0 at P where s = 0 and this
proves that the osculating plane has three point contact with the curve.

Expanding r(s) by Taylor’s theorem in the neighbourhood of P,

0 N
r(s)= r(0)+ - 1(' S+ 2(?) y "'(0) +0(s*) (2)
Neglecting powers of s greater than 3 in (2) and substituting it in (1), we obtain
’ 0 " "
F(s) = {”l(' " rz(?) 241 3(?) s, 1'(0), r”(O)} -(3)

,)

{1(0) o), ”(0)}+lr"(0 ()P0 2

3

+ [F(0), ¥'(0), ”(0)] *—' .03

The first two terms of (3) vanish. Using KT=[r,r”, ] in (3), we obtain

F(s) KT s
§)=——
6

Hence F’(0) =0, F”(0) =0 and F”(0) = ~k217# 0, provided x and 7 do not
vanish at P. This proves that in general the curve and the osculating plane have
three point contact at P.

Note. Incase if k=0, or 7=0, F”(0) =0 so that the plane must have at least
four point contact with the curve.

1.11 OSCULATING CIRCLE AND OSCULATING
SPHERE
With the help of notion of contact of curves and surfaces, we obtain for space

curves the analogues of circle of curvature and radius of curvature known for plane
curves. Since we are concerned with the contact of curves and surraces, we may
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int contact with the given curve. This leads the
e and the radius of spherical curvature,

e curve and P be any point on jt The
given space curve at P is calleq the

think of a sphere having four po
introduction of osculating spher :
Definition 1. Let y be the given spac
circle having three point contact with the
osculating circle at P. ' . ‘
Definition 2. The radius of the osculating circle is called the radijyg o

curvature of the curve at P. It is denoted by p- The centre of the osculating circg

called the centre of curvature at P. . |
Using the above definitions, we note the following properties of the osculating

circle.

| Since the osculating plane has also three point contact with the curve atp,
the osculating circle lies on the osculating plane. It is evident even
otherwise if we define the osculating circle as the curve passing through
three consecutive points on the curve as we have defined the Osculating
plane as the plane passing through three consecutive points on the curve,
2. Since the circle of curvature and the curve have the same tangent at P lying
in the osculating plane, the centre of the circle lies on the principal norma]

atP.
Theorem 1. The radius of the osculating circle at P is the reciprocal of
curvature of the curve at P and the position vector of its centre of the osculating

oy 1
circleisc =r + pn where p= —.
K

Proof. Choosing arc-length s as parameter, let ¢ be the position vector of the
centre of the osculating circle. The centre ¢ is at a distance p from P along the
principal normal at P. Hence we have ¢ — r = pn. Hence its equation is

(¢ —r)-n=p. We prove that p = l
K

Since any point r = r(s) on the osculating circle satifies the equation of the
§phere (c - R)* = p? and lies in the osculating plane, the osculating circle is the
nntefgection of the osculating plane and the sphere (¢ — R)? = /D2 where R is the
position vector of any point on the sphere. If r(s) is the point of intersection of this
sphere and the curve, the sphere has three point contact with the curve at r =I(s)

Let the point of intersection be F{s)=1(e - r)2 - pz.

The conditions for three point contact are

F(s) =0,F'(s)=0, F"(s)=0 A
. F'(s) =0 gives (c-r)t=0 e
Differentiating (2), (¢ — D)t —tt=0
Since t = K
—Knandt'tzl’wehave(c_r).x‘n::l i

gel

C i : ) .
omparing (3) with the €quation of the osculating circle (¢ —r) n = p, we

A=

y
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Thus we have proved that centre of the circle of curvature is¢ =r + pn and the
radius of the circle of curvature is the reciprocal of the curvature of the curve at P.

Definition 3. A sphere having four point contact with the curve at a point P is
called the osculating sphere at P on the curve.

Definition 4. The centre of the osculating sphere is called the centre of
spherical curvature and its radius is called the radius of spherical curvature.

Theorem 2. Ifr =r(s) is the given curve y, then the centre C and radius R of
spherical curvature at a point P on yare given by

C=r+pn+opb,R=+p? +05°p"?

Proof. If Cis the centre and R is the radius of the osculating sphere, then its
equation is (C — R)? = R? where R is the position in vector of any point on the
sphere. The points of intersection of the curve and the sphere are given by
F(s) = (C - r)* = R* = 0. Since the sphere has four point contact with yat P, the
conditions of four point contact are F(s) = F'(s) = F “(s) = F”(s) = 0 which give
rise to the following equations.

F'(s)= Ogives (C-r)-t=0 (1)
F’(s)= Ogives(C-r)-kn—-1=0 ..(2)
F”(s)= 0gives (C-r)-[Kn+ k(b - Kkt)] =0 giving

K(IC-r)n-i*(C-r)t+ KkT(C-r)-b=0 ..(3)

Using (1) and (2) in (3), we get

K i kt(C-1r)b=0
K

’

1 , K
Letp:land0'=—.Thenp = s
K T K

have (C-r)-b=p'c (4)

From (1), (2) and (4) we have

(C-r)t=0,(C-r)n=p,(C-r)-b=pc.

The above equations show that (C - r) lies in the normal plane and its
components along the normal and binormal are p and p’ o respectively. So we can
write (C —r) as (C —r) = pn + p'cb. Hence the centre of the osculating sphere is
C=r+pn+pob.

The radius R of the osculating sphere is given by

R*=(C-r)*=(pn+pcb) (pn+pob)=p+ p?o?

Hence R = |/p* + p’?c?.

As shown in Fig. 2, the centre of osculating shpere lies in the normal plane on
a line parallel to the binormal called the polar axis. The intersection of the sphere
with the osculating plane is the osculating circle.

Using these in the above equation, we



Fig. 2

constant and p’ =0sothatR=p.

Note. When «cis constant, p= % is also @

Thus for a curve of constant curvature, the centré of curvature and the centre of
spherical curvature coincide anditise=r+ pn. -

Example 1. Show that the radius of spherical curvature of a circular helix is
equal to the radius of curvature.

Sincepisa constant for a circular helix, the result follows from the note above.
Example 2. Find the centr¢ of spherical curvature of the curve given by
r = (acos u, a sin u, @ cos 2u) (1)

(r- CF = R? with centre € and radius R has four point

The osculating sphere
here to have four point

ith the space curve. The conditions for the sp

contact W
contact with the space curve are

(r-0)r =0 (2)

r-C)-+i> =0 .03

(r—C)-'l"'+3i'i‘ =1 ()

0

Let us take the centre C = @i + Bj + vk

. Using (1)and (5.) in (2), (3) and (4), we get three equatio
olving these equations, we get the centre of spherical curvature.

Using the condition (2), we get
[(a cos u— Q)i + (a sin u—P)j+ (acos2u- k)

[(= a sin u)i + a cos uj — 2a sin 2uk] =0 which gives

ns in three unknowns:

| o sin u — B cos u + 2y sin 2u = 2a cos 2u sin 2u -
Using the condition (3), we get
[(a cos u— )i + (a sin u — B)j + (a cos 2u — Nk|

[ a cos ui —a sin uj
. sin uj — 4a cos 2 .2
j —4acos 2uk| + a*(1 +4sin”2u) =V

e
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Simplifying the above equation using dot product,
0 cos u+ fsinu+4ycos 2u =4a (cos® 2u — sin® 2u) (1)
Using the condition (4), we have
[(a cos u — )i + (a sin u— B)j + (a cos 2u — Y)k|-
la sin ui —a cos uj + 8a sin 2uk]
+ 3[—a sin ui + a cos uj — 2a sin 2uk]- [~ cos ui — a sin wj - 4a cos 2uk] =0
Simplifying the above equation, we get
asin u — B cos u + 8ysin 2u = 32a sin 2u cos 2u s B

Now (8) — (6) gives 6y sin 2u = 30a sin 2u cos 2u

) T
Since u # 0, > or 1, Y= Sa cos 2u.

Substituting this value of yin (7), and (6), we get
acos u + fsin u=— 12a cos’u - 4a w(F)
and a sin u — fcos u =—8a sin 2u cos 2u ...(10)
(9) cos u + (10) sin u gives
o =— 12 acos® 2u cos u — 4a cos u — 8a sin 2u cos 2u sin u
=— 8a cos 2u (cos 2u cos u + sin 2u sin u) — 4a cos u(cos? 2u + 1)
=—8a cos 2u cos u —4a cos u (cos2 2u+ 1)
=—4acosu (1 +cos 2u)2 =_ 16a cos’u.
Using this value of @and 7, we find f3 from the equation (6)
Pcosu =-16a cos® u sin u + 16a sin u cos u cos 2u
= 16a sin u cos u [cos 2u — cos® u] which gives
P cos u = 16a sin u cos u[l -2 sin®u — (1 — sin’ u)?]
= _ 16a sin’u cos u so that = — 16a sin’u
Hence the coordinates of the centre of spherical curvature are
r =(-16a cos’ u, — 16a sin® u, 5a cos 2u).

Example 3. If the radius of spherical curvature is constant, prove that the curve
either lies on a sphere or has a constant curvature.

The radius of spherical curvature is given by
R*= p2 + (ap’)2 (1)

Since R is constant, differentiating (1), we get

/ d /
2p [p+cr—(op )]=O .(2)
ds

d
(2) shows that either p’=0 or p + GZ (op’)=0
5

If p” =0, then p is constant. That is the curve has constant curvature.
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d
Alt tively if p+ o—(op’) = 0, we shall prove 1h. .
ernatively if p s P) prove that the Curye it

sphere. on 4
If a curve lies on a sphere, the osculating sphere at €Very point of th

the given sphere. So it is enough if we show that the osculating Sphere ;. Curye i

at every point of the curve. Since the radius of spherical Curvature j COS Fhe Sdm

osculating sphere has same radius at every point of the curye S0 to g Astan; the

proof, we shall show that the centre of the osculating sphere jg 4 fixed o lete

by a constant position vector. The position vector of the cenr PO giy,

. ’ re of S
curvature is C=r + pn + gp’b.

enCaI
Differentiating with respect to s, we have
dC dr dn d db
—— =—+pn+p— +b—(0p) + 5o’ 22
ds ds P b ds ds( P) P ds

. 1 1
Using p=— and 0= — , we have
K T

dC

—— =t+p'n+p(th-kt) +bdi(c7p’) + op’(-
S

ds n)

= {B ; i(op’)]b =0 by (2)
o ds

Hence C is constant showing that the centre of the oscula
independent of positions of points on the curve. Thus the oscuyl]
every point of the curve is the same sphere so that the curve lies o
Exampled4. Show that a necessa
sphere is

ting sphere
ating sphere 4
n a sphere,

ry and sufficient condition that a curve lies ona

d
L +—(0p)=0
o ds
atevery point of the curve.

To prove the necessity of the condition, let us assume that the curve lies on¢

sphere. Then the sphere is the osculating sphere at every point of the curve so thal
the radius of the osculating sphere is constant.

The radius of the osculating sphere is

1)
Since R is a constant differentiating (1), we get

2pp’ + 2(op’) g (op’)=0
ds

conditio®

Since p’ # 0, we get p+o % (op’) = 0 proving the necessity of the
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Conversely let us assume that the condition is satisfied at every point of the
curve. Multiplying the given condition throughout by p” and integrating with
respect to s, we obtain p* + (0p’)* = constant which shows that under the given
condition the radius of the osculating sphere is constant at every point of the curve.

The centre C of the osculating sphere is
C=p+pn+opb
Differentiating C and simplifying as in the previous example, we have
dC p
= = M +_ 0_ 7 b . . . L 1
= |:0' ds( % )} which is zero by the given condition. Hence C is a

constant vector which means that the centre of the osculating sphere is a fixed point
Therefore the given curve must lie on a sphere. Hence the condition is sufficient.

112 LOCUS OF CENTRES OF SPHERICAL CURVATURE

Unless the curve lies on a sphere, the centres of spherical curvature change from
point to point as the point moves on the curve. Hence it is but natural to study the
locus of the centres of spherical curvature of the given curve. Let C be the given
curve and C, be the locus of centres of spherical curvature. After finding the
relation between moving triad (t, n, b) on C and the moving triad (t;,n;, b,) on C,,
we express the curvature and torsion of C, in terms of those of C. We shall use the
suffix 1 for the quantities pertaining to C, to distinguish them from the
corresponding quantities of C.

Theorem 1. Let C be the given curve and C, be the locus of its centres of
spherical curvature.

Then (i) t; = eb,n; =en, b, = - ee;t where e = ¢, = + 1 and

(i1) The product of the torsions at the corresponding points is equal to the
product of curvatures.

Proof. The position vector ry of the centre of spherical curvature is given by
r,=r+pn+opb (1)

Choosing the arc-length as the parameter and differentiating (1), we obtain

axy = an ds _ ar +p'n+pn’ +(0d'p’b + op”’b) + op’b’
ds ds, ds ds
dn ds,
ds, ds

So =t+pn+p(thb-xt)+(p'c’ + op”)b + op’(- Tn)

Hence t;s', = (B— +p'c’ + Gp")b so that t; is parallel to b.
c

Now C is parametrised by s and so s, is an increasing functions of s so that s",
is non-negative.
2
So if we take t, = eb where e =+ 1, +(2)
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then we nave s = ¢

joutn, and b

Having found outt fet us find

Differentiating 2 1th respes
t dr, d db
¢ = cTn
d 1
At . o S 4 »
S ¢ a1 VO AN A I (S nat N 1s I“-‘I\—i‘l'ﬁi}.}n
o
So we cin take n e n
where o .+ ] Using thns o ” = - €T 3
Further b =t -n - chxen=-ceelt 1
(s

Hence (20, 3) and | 5) prove (1}

To prove (i), let us find 7. and &7

db, db, ds, dt i

. — = = = £ xnw:h;('n s.= €€.KN
ds ds, ds ds

Since n, =en wegett s, = €K

From (4) and (6) eTT s’ = eteK =~ €Ke K. s, which gives T, = - ¢ xx

Thus ife, =—-1.we have TT, = KK} W hich proves ().

Note. 1fCisof constant curvature, then p’ = 0. As we have already noted i

centres of spherical curvature and curvature conicide. Using p =0,

) s, b) T
We obtain L el ze—.e=21
Ll\ (0] N
From (4) of the theorem, ek =-¢T
Substituting fors’, we get e K, =-Kife=- 1
Choosing ¢, = — 1, we find Ay = N
Also from (6) of the Theorem T8, = €N
Substituting for s}, we find N
‘ g fory’, we fin ==
T
Note. 1f we measure the arc-length s, of Cy1n that direction which makes
unit tangent t; have the same direction as b, thent, =b. We may chose the direct”
_ ¢ Theseare™

of n opposite to n s thatn, = — n. With this choice, we have b,
particular cases of the above Theorem.

Theorem 2. The radius of curvature p; of the locus of t
curvature 18

he centrés d

B
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imi[c_fﬂ_gw_f
Pl—lLLRa ds P,/I R| o R

12 ] —

where R is the radius of spherical curvature.
Proof. We shall use suffix unity for the quantities related to the locus of the
centres of curvature C,.

By Theorem 1 of 1.11, the position vector r, of the centre of curvature is
r'=r+pn ..(1)
Using the arc-length s as parameter, let us differentiate (1) and find 57,

dr, _dr ds; dr N n
— = ———=—+pn+p—
ds ds; ds ds prrp

tis’, =t+p'n+p(th - xt) which gives

O- 4 G /
—tsy =—pn+b
p

-.(2)
p
Taking dot product of (2) with itself, we get
2 2 2 /2 2 2
O-_zs’f —pt+1=T P TP ZR*Z
p P p

where R is the radius of spherical curvature.

R
Thus we have from the above step, s, =

AT
(o]
Differentiating (2) with respect to s again, we get

o ,d d , db
Es'lﬁ.ﬁ +t|i gsl’]z—p—nwL—(gp ]n+—
p ds ds ds\ p p ds ds

p
9 2 § L2y 2 pltb- k] + d£0
= g2 +t,—|—s{|=— — —
pSlKlnl 1dstl P ds

Thus we obtain,

G, A0 O il Tyl 2y (4

Taking the cross product of (2) and (4), the left side of the resulting equation is

2 2
o 3 _. 9
—5 S| Kty Xmy = K—5 ;b
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Se
and the right hand side is
72 2 2 2 .1
o’ + dlo , o, o©
\:P P_ _ _[__pﬂt———2pn+ g b

p

pzo' ds

Hence we get

2 2 2 v
o+ dlo , o 2,
o> oy = L,L__(_p]]t_Tp,n+c\,ﬂb
p p3 :

Taking dot product on both sides with itself,

4 2,2 ;) = 2 .
20 wz[g_o__w___d_(zp,ﬂ +ng,2+0,24}

K__
P p’c ds\ p

Substituting for 5", from (3), we get

o* RS R? dfo 2 gl
% =\ 5P + B 2R | givi
pt o plc ds\p p® Etving

1
5 L]
1 p*cdf(o ctp? |?
e " {R— R’ dS(Pp)} ' pzl;z“

; 1
Since p; = ot we get the formula for K.
1
Using some of the steps in the theorem, we shall find torsion 7, in ¥

following corollary.

Corollary. 71, = g % _J4iR
R | p ds\ p

We have from (2) of the theorem

)2

o c ,
—tIS'1=-—pn+b

Taking cross product with n; on both sides of the above step:

X

-

o (o]
Zt,xn s, =—pnxn+b
p




But we know that N, = - n so that we have g bIS’l =t

Difterentiating the above relation with respect to s,

dlo o ,db, ds; dt
— —sl bl+_s 1"~ =
ds\ p p ds; ds ds

p

Takin_g the dot product of the above equation with itself on both sides, we obtain

d|o : o :
’ ’

, R
Let us use s, = — and find 7,.
(o]

That is i —s/|b,——¢27n, =kn
P 1|0 1 iy
5 p

T2
po| 1 d 5
Tuswegel % = x| 27

[t x t”|
Example 1. If R is the radius of spherical curvature, show that R =

K2t

We shall find t x t”. Since t' = xn, = =, differentiating this relation, we get
€S :

t” = L. —-p—ln = l(rb—rft)- p—z“
p P P
4 1
=__l_t_£2—n+——b
p>* p- PO
w_ Py b
Hence txt’ =-—b &
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let us consider tangents at different points of the curve. These tangents will
generate a surface and we consider curves on this surface. These notions lead to the
definitions of involutes and consequently evolutes of a given curve.

To start with, it is worthwhile to point out the basic differences between the
evolutes of a plane curve and those of a space curve.

(i) The evolute of a plane curve is unique but the space curve has infinitely
many evolutes.

(i1) Evolute of a plane curve is defined as the locus of the centres of curvature
but we will show that the evolute of a space curve is neither the locus of the
centres of curvature nor the locus of the centres of spherical curvature.

However the concept of involute of a plane curve has natural generalisation to

the space curves. Once we obtain the involute C of a curve C, we define Cto be the
evolute of C.

Definition 1. The surface generated by the tangent lines to the given curve C
is called the tangent surface to C.

Using this definition, let us find the position vector of a point P on the tangent
surface.

Let A be any point on the curve at an arcual distance s from a fixed point O on
C. Since P is a point on the tangent surface, AP is tangent to C. If u is the distance
of P from A, then the position vector of P on the tangent surface is R =r(s) + ut(s).

Since R is a function of two parameters « and s, we denote the position vector
by R(s, u) so that we can write R(s, u) = r(s) + ut(s). (1)

Since (1) is a function of two parameter, it represents a surface.

If we assume any relation of the type u = A(s) as the point moves on the curve,
(1) represents a single parameter family so that it represents a curve on the tangent
surface of C. Hence any curve on the tangnet surface has the positions vector

R =r(s) + A(s) t(s) - A2)

We take the class of the curve (2) to be the smaller of the class of C or A.

Definition 2. A curve which lies on the tangent surface of C and intersects
the generators of the tangent surface orthogonally is called the involute of C
denoted by C.

From the definition it follows that the tangents of C are normal to C. This
means that the tangent to C at a point P is orthogonal to the tangent at the
corresponding point of C. The following theorem gives the equation of an
involute. We use the suffix 1 for the quantities pertaining to C. 3

Theorem 1. If r; is the position vector of a point P, on the im{qlute C of C,
then i'l =r + (c - s)t where ¢ is an arbitrary constant and r is the position vector of
Pon C.

Proof. Since the involute lies on the tangent surface, the position vectorr; of

a point P, on the involute (Fig. 3)isr =1+ A(s)t | (1)
Using the definition of the involute, we shall find A(s) in the following manner.
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117 FUNDAMENTAL EXISTENCE THEOREM FOR
SPACE CURVES

As illustrated in the example of previous

determine the intrinsic equations by finding
Therefore the question naturally

scetion, piven the curve, we can
curvature and torsion as functions, of »

arises whether the converse is true, That is, piven
curvature and torsion as functions of

under suitable conditions on
some conditions on k(s)

arc-length s, can we determine the curve
(s) and T(5)? To answer this question, we impone
and 7(s) and then we determine not only posttion of the
curve in space but also show that all the curves congruent to it will have the same
intrinsic equation. The following theorem known as the fundamental existence
theorem for space curves asserts the existence and uniquencys of space curves
interms of intrinsic equations, when the scalar function K(s) and 1(s) defining
curvature and torsion are continuous functions.

Theorem. If x(s) and (s) are continuous functions for all non-negative real

values of s, then there exists a unique space curve determin
space for which « the is curvature and 7 is the torsion an
measured from suitable base point.

cd but for position in
d s is the arc length

Proof. The method of proof is to construct the position vector r(s) at any
point on the curve and the moving triad t(s), n(s

) andb(s) with the help of the given
intrinsic equations.

Now consider the following three simultaneous differential equations of first
orderin o, Band vy.

do dp

d
— =kKkB, — =Ty-kKko, —~ =—1 1
ds B ds U ds g )

where o, f3, ¥ are unknown functions of s and k., T are given functions k(s) and
7(s). Since k(s) and 7(s) are continuous functions, the above set of differential
equations has a unique set of continuous solutions («, f, 7) with prescribed initial
conditions at s = 0 as guaranteed by the theorem on existence and uniqueness of
solutions of a set of differential equations of first order.

The whole technique of proof is to use the three solutions (¢, f3,, Y),i=1,2,3
with three different initial conditions and identify the vectors (0, oy, o),
(B1s By: Bs), (11, 15, 73) constructed on the basis of solutions with (t, n, b).

The set of equations (1) admits a unique set of solutions which assume the
prescribed value (o, By, %) at s =0.

Let (o, B, 7,) be one such solution taking the prescribed value
0,(0) =1, B,(0)=0, and 7,(0) =0 (2

In a similar manner, we can find two more solutions (o, 3,, %) and (o, By, 74)
having the prescribed conditions.

0,(0) =0, B0) =1, K(0)=0 (3
04(0) =0, B3(0) =0 p0)=1 ats=0.

The following four steps establish the theorem.
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Step 1. We shall establish the following properties of the - Jlrg,
. v

solutions. € thy,
atepieyl =1 aa+ Bibs+ 7, =0 ~
a22+ﬂ22+'y22=1 aza3+ﬂ2ﬁ3+72'}’3 =0
a32+ﬁ32+y32=1 a3a1+B3B1+7371=0

for all values of s. These properties will enable us to introduyce B (g

Q J
matrix for finding (¢, 0, 0), (B1 Ba B3) 204 (71, 2, 73) to define ¢y :(k?gﬁn&
3 )’ ’. A

da, dp, d
+2B,— + 2y 271
s TP

Since (o, B, ¥;) are solutions of (1), we get

d _
Zg‘(a12+ﬂlz+)/12) =204

st—(a12+ﬁ,2+712) =20, KBy + 2B1(Tyy — KOy + 29 (~ Bi=g

Hence o2 + B2 + v = constant ¢ (say).

Using the initial conditions (2), we get ¢ = 1 and so we have o2 + B2+ e
1=1,

In a similar manner, we can prove a; + 35 + yI=1, 03 + B2+ Yiey
To prove the other relations in (4), let us consider ‘
d
— (o, + BB+ 1)
ds
= % + + + + &N dy
' ds s ds Par i ds ds 72'*717;

Since (o, By, %) and (@, B,, 1) are solutions of (1) substituting for the derivative;
from (1) g

= ay(kBy) + 0p(kBy) + Bil7y, — K05l + BolTyy — Koy +v,[- 168,] + %= 18, =0

This proves that o0, + B,B, + 7,7, = constant d (say). Using the initi2
condition (3), d = 0 so that

a0+ B+ ny, =0
In a similar manner, we get

005 + Byl + 1y, =0

ouoy + By + 1y, =0

Step 2. We prove thatt = (@, 0, 03), n = (B, B,, B;) and b= (1, b HE
three mutually orthogonal unit vectors.

Now consider the matrix

o, By 7,
A=la, B, 7,
a, Bi vs
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The six relations proved in the first step show that the matrix A is an orthogonal

matrix. This implies that if A is the transpose of A, then AA” = [ where [ is the
identity matrix. Now the equation AA’ = [ implies A’ = A~" so that we have
AA=]

s D)

Now the matrix equation (5)is

a @ aylla, B Y1
B B B, o, B, Y2
{Jl Y2 Yallas By vy,

(8]

r o2 2 2
ay to;  +og a1/31+0‘2ﬁz+0‘3ﬂ3 Gy +0,Y, +asy,

= | B, +a,B, +a,f, /3% +ﬂ% +,B§ Biv1 + Byya + Bays
(¥ + @Yy vagys g B +y,8, +73B; Yi+v: +73

1 00

=10 10

10 0 1
which gives

2 2 2
O.'1+(12+a3 =1,

Bi+B3+B3 =1,

Y yi+yd =

a1+ o, + 4p; =0
Bini+ By, + Byy; =0
, Oh+ o+ oy =0

The above six relations show that these are three mutually orthogonal unit
vectors

t=(a, o, &), n=(B,, B, B3) and b = (y,, Y2 Y3) for each value of s.
Step 3. We find the position vector of a point on the curve.

Let us define the curve r(s) = ja (s)ds ...(6)

: dr
Differentiating with respect to s, e t=afs).
s

This shows that the arc-length s and the unit tangent vector to the curve (6) are
sand t = a(s).

t da
Further at =— = k(s)B from (1)
ds ds

Since at = Kn, the unit normal vector n is parallel to the unit vector B and
ds

K= K(s). If we take the sense of n as that of 3, we getn = B.
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- ~~fi7’5t
L

")l(
l',"

have b= 7. So L2 _ dy
= ave b=y e e
Sinceb=txn=ax =7, we ds ds T(S)Bfmr

0

)
Since —d—tl = — 7n, we have 7= 7(s).
s

§ . oia i
Hence ifr = j t ds, then r(s) is the position vector of 3 Point op the
s

) Cury,
the arc length s as parameter and having (t, n, b) as the m

k= k(s) and T = 7(s) as curvature and 'torsion.
Step 4. We shall establish thf: uniqueness qf the curve. T
show that if the curves have same intrinsic equations, then they are i We hy
Let C and C, be two curves deﬁr_xed in terms of their respective . ng,
having equal curvature and equal torsion for the same value of g C‘leng\h,}
LetA and A, be two points of C and C, corresponding to 5 = b
so that the points A and A, coincide. If (t, n, b) and (t,, Ny, by) refer ) tlhee Mo
and C,, then C, be suitably oriented so that (t,, n;, b,) at A, coincide i Uy,
at A when s = 0. Since different points of the curves are detel‘mined by i ny
values of s and since both the curves have the same Curvature and ¢ orsion ; Sam

oSy

OVing

dng
thl S €n

0. LetC

Ve gy
dt, dt
Bl =t-—+ —-t;, =t (kn,) + -
St =t —L+ ! (kn) + xkn - ¢,
d dn,  dn =
E(n-n,)=n- = +ds'"l—n'[ﬂfh—'<t1]+[rb—r<t].n1
d db, db
=l . =b. +—-b =b. e e 5
ds(b b;) - ds D! (—Tny) +( n) - b,

Since the sum of the terms of the ri ght hand side of the above equations is zery
4 (t-t;,+n-n +b-b)=0
o 1 1 1

Integrating the above equation, we obtain

t-t;+n-n; +b-b, = ¢ where c is a constant.
Ass=0,t=t,n=n, andb=b, sothatc=3
Thusweobtaint-t1+n-n1+b-b1=3 B
Since the dot product of two unit vectors gives cosine, the above equation g"‘fi
the sum of three cosines. But the sum of the three cosines is equal to 3 only whe

s i s . : - t=!
each angle is zero. This implies that at all pairs of corresponding points
n=l’l1 andb=b1.

d s’
Further t = t, gives %(l’ —ry) = 0 which gives r — r; = a constant

es Cant!

s ; curv i
s=0,r=r;sothatd =0, Hence r = r, identically. Thus the L osition i
coincide so that the curve is uniquely determined except as to 115 P

This completes the proof of the theorem.

e
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orthogonality conditions of the theorem. P

We can easily check the . . :

Note. The solutions of the equations involving @, [, Y become difficyy;,
most of the cases, in particular for the curves of class > 3. 1f k(s) and 1(s) aeg
class > 3, eliminating B, v, We obtain a third order equation in o with varid
coefficients. In some of the simple cases We obtain solution of the equationby
change of variable as in Example 2. Butsuch a third order equation can be redue
o a first order Reccati equation whose solutions are well-studied. Solving t
Reccati equation of first order, we obtain its solution.

1.18 HELICES

We conclude this chapter with a brief discussion of the properties of a wide classd
s : :
pace curves known as helices which we used as examples in the previous section

,—u Ml o4 . . .
. m_ .,__w_:cs 1. Aspace curve lying on a cylinder and cutting the genertlos!
ylinder at a constant angle is called a cylindrical helix.

The ab ORI
angle Qémﬂ\o Marséos implies that the tangent to the curve makes 2 consih
W afixed line known as the axis of the helix
€ can obtai . : o
replaced by 09% macw_.a general helices than cylindrical helices if the cylindet®
our study. The »,osoé._moam like cone. But we consider only Q:saaoa helices
Theorem 1. A M g theorem characterises the cylindrical helices:
i & .
that the ratig of the OEMM”&% and sufficient condition for a curve to b
re t o .
. Proof. To prove the 0 torsion is constant at all points. o
i necessi . -
irection of the axis. g ecessity of the condition, let a be the anit vt "

f&77

wDO@ s
the helix cuts the generators ata oo:mga %mx.
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angle between the generator and the tangent at any point P on the helix be o So
from the definition of the helix, we have t-a = cos o

Differentiating (1) with respect to s, we get (1)
area=0 -.(2)

Since a is a constant vector and t" = k'n, we get from 2)
Kna=0 .(3)

If k=0, the curve is a straight line and the conclusion of the theorem is
obvious. As we have excluded the case when k=0, (3)givesn-a=0 showing that

a is perpendicular to the normal at P. Since a passes through P making a constant
angle o with the tangent t at P and perpendicular to the normal at P, it lies in the

rectifying plane at P. Hence (cos ¢, sin @) are the components of a in the rectifying
plane so that we can take a =t cos @ + b sin o ..(4)

Differentiating (4) with respect to s and usinga’ =0,
(t' cos o+ b’ siwar) = (K cos a— 7sin amn=0
. s ... K
Sincen # 0, we have Kcos - Tsin a=0 giving —

= tan o which is constant,
T
proving the necessity of the condition.

K
To prove the converse, let us assume — = constant A (say) and prove that the
T

curve is a helix.

Given any constant A, we can always find the smallest angle o such that

K . )
tan o = A. So we can take — = tan o giving (Kkcos a— tsin &) =0
T

..(9)
«0)

Since n # 0, (5) implies n(kx cos ot — Tsin @) =0

(6) can be rewritten as di (tcosa+bsina)=0
s

This proves that t cos @+ b sin « is a constant vector a (say). Then
a-t=(tcosa+bsin @) -t =cos o which proves that the curve is a helix.

In the above definition of the cylindrical helix, we have not specified the base
curve which is the cross section of the cylinder by a horizontal plane. However if
we take the circle to be the base curve, we get a helix on a circular cylinder. Such
helices are called circular helices. With proper choice of the coordinate axes, we
shall find the equations of a circular helix.

Theorem 2. If the z-axis is the axis of the cylinder as well as that of the helix,
the parametric equation of the helix is of the form

x=acosu,y=asinu,z=bu
where the base circle is x> + y2 = az, z=0and b is a suitably chosen constant.

Proof. Let P be any point on the helix with the position vectorr and P, be i.ts
projection on the XOY plane with the position vectorr;. Let a be the unit verctor in
the direction of the axis of the helix. By our choice of the axis of the helix, a is
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Fig. 6

parallel to the z-axis. So PP is parallel to a and hence P p = T2 Hence y "

pTP = (r-a)a. Using this we write the position vector of P, as

rir=r-(a-ra
Differentiating (1) with respect to s, we get

ﬁ =t-(a-t)a=t-acos ¢
ds
Hence taking dot product of (2) with itself,
dr, dr

(t—acos @) (t—a cos o) = sin’ o
ds ds

If 5, is the arc length of the
dry-dr, =dr}. Using this in (3), w
S;=sinas.

Projection of the helix on the XOY pl
€ getds, = sin o ds which implies
Since the helix 1S a circular helixt-k = COs @, so that

dr d dz
€ Tl TS - = - oJg e
0 (r-k) 3 COS @, since r Z

s

Hence from the above Step, z=s cos o

Using (4) in (S), we obtain ¢

From the Fig. 6, AP,
If (x, y,

= Sl cot o

=ausothat z = qu cot .
Z) are the coor

dinates of P, then we have from Fig. 6,

":aCOSu,y=aSinu,z:buwhercb.—.acul(l
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