§26

Compacy Spaces

163

3

Figure 25.1

8. Let p: X — Y be a quotient map.

Y& ¥ r (S SR \ v t .lf X iS l()‘ Y

18 l\\t.\lll) Lm}ncue(?. [H:‘nt: If C is a component of th cally connected, then y

that p~ " (C) 1s a union of components of P~ (UY] € open set U of Y, show

9. Let G be atopological group; let C be the component of G co taini ident;
element e. Show that C is a normal subgrou . b CHeNli

fG. (Hint: .
the component of G containing x. | POLG. [Hint: If x € G, then xC is

Show tha

10. Let X be a space. Let us define x ~ y if there is no separation X

into disjoint open sets such that x € A and y € B, =AUBof X

(a) Show this relation is an equivalence relation. The equivalence classes are
called the quasicomponents of X.

(b) Show that each component of X lies in a quasicomponent of X, and that

the components and quasicomponents of X are the same if X is locally con-
nected.

(c) Let K denote the set {1/n | n € Z,} and let —K denote the set {—1/n | n €

Z.}. Determine the components, path components, and quasicomponents of
the following subspaces of R?:

A= (K x[0,1)U{0x0}U{0x1}.
B = AU ([0, 1] x {0}).
C = (K x[0,1])U (=K X [—1,0]) U ([0, 1] x —K)U ([-1,0] x K).

§26 Compact Spaces

SS. the

The notion of compactness is not nearly so natural as that olf ‘Con;rf,tfeg\n:::uf{iz?hnd
beginnings of topology, it was clear that the. closed mlerv.n la Dot the T e
a certain property that was crucial for proving such themti;:: u{imc it.was i
theorem and the uniform continuity theorem. [:Eilu!;fyilw[mﬁ)gicul, bighieety oo
how this property should be formulated for an & $0 g i
be lhOug}‘l)t tEat z{he crucial property of [ i ll:c h:b:iiuv\i?itﬁ:::lu“}rlith the name of
of [a, b] has a limit point, and this property wis th"f one bl o oes not tie at the
compactness. Later, mathematicians realized that this formulalt Py e

. 1 ; formulation, 1n terms
heart of ¢ ¢ rather that a stronger 107 7 s e
of the SP;Z« “_1: tte;,r: lclentral The latter formulation is what we now call comp
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iliarity with it is ne
witive as the former. some familiarity died hef%
| or 1N
« ot /% nanIra | \
::"nu*hdmw\' hocomes apparent.
gion A of subsets of a space X is said to myrr X, 0f 0 be \
) m::\ " sn of the elements of A 1S equal 1o X. It is called an b,
1| the unnt ‘

are open subsets of X.

Pefinition.
m.( ol A .
covering of X i1t elements

A space Y is sard to be compact if every open covering A of X containe
Mn‘ﬂl‘m P ~ :
» finite subcollection that also covers X.

my 1 The real line R is not compact, for the covering of R by open intervals
‘ AAM™ »

A=(nn+2)|nel
comtains no finite subcollection that covers R.

Eaameir 2 The following subspace of R is compact:
X={(0U{l/n|neZ}).

Cyven an open covering A of X, there is an element U of .A containing 0. The set I/
comtaims all but fmiely many of the points 1/n; choose, for each point of X not in U/ an
cement of A containing it The collection consisting of these elements of A, along with
fhe clement [ 1s 2 finite subcollection of A that covers X.

ExampPii 3 Any space X containing only finitely many points is necessarily compact,
because n this case every open covering of X is finite.

EXAMPLE 4. The interval (0, 115 not compact; the open covering

A={(1/n1]|ne Z,)

s 1o fnite subcollection covering (0, 1. Nor is the interval (0, 1) compact; the

sp!l]:cs. On (-he. other hand., the interval [0, | | is compact; you are probably

" this fact from analysis, |y any case, we shall prove it shortly.
W gencrad, y g ,
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cther a given space is compact or
eeneral theoremsy that show us how to construct new
Eones. Then in the next section we shall show certain

wli COMpa I 1 he > am L ‘
nd | PAct Thewe spucey include all closed intervals in the real line,
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il Paces. 16 Y is a subspace of X, a collec-

he union of its elements contains Y.

X . '{‘hcn ¥ is compact if and only if every
d finite subcgllection covering Y.
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proof. Suppose that ¥ is compact and A - Aalyer §
in X Then the collection ®lae s 18 acovering of ¥ by sets open

‘Anﬁ"'ag]} ‘

i u covering of ¥ by sets open in ¥ hence a finite subcollection

lAO] (\Y""‘Aﬂ.mr’

covers ¥ Then {Any. -« Aa, | is a subcollection of A that covers Y
Conversely, suppose the given condition holds, we wish to prnvé ¥ compact. Let

4 = [A_ ] be acovening of ¥ by sets open in ¥ For each
. ‘ ‘ a . choose t apen
in X soch that %t Ay

PE—————

AL = A, NY. i
The collection A = [A,] is a covering of ¥ by sets open in X. By hypothesis. some

finite subcollection {Ag, . ... Ag,} covers Y. Then (A, . ..., A, | is a subcollection
of A’ that covers Y. ! u

Theorem 26.2.  Every closed subspace of a compact space is compact.

Proof et Y be a closed subspace of the compact space X. Given a covering A of ¥

by se1s open i X, let us form an open covering B of X by adjoining to A the single
open set X — Y, that is,

B=AU[X-Y]

Some finite subcollection of B covers X. If this subcollection contains the set X — ¥,
discard X — Y otherwise, leave the subcollection alone. The resulting collection is a
finste subcollection of A that covers Y. L

Theorem 26.3.  Every compact subspace of a Hausdorff space is closed.

Froof  1et ¥ be a compact subspace of the Hausdorff space X. We shall prove that
X 'Vuupcn.wdw)’iscwwd. o

|1 1 be a point of X — Y. We show there 15 a neig_hbumwd of xo that is fhs,.mm
from ¥ For each point yof ¥, let us choose disjqim MIW U, un! v, m m.
pownits zg, and y, respectively (using the Hausdorf! cc_)cgltllun). The guuecuu‘n (Vyl v €
Vs a covering of Y by sets open in X therefore, finitely many of them V, . .. V

cover ¥ The open wel

¥

V e V“ L) v VM
containg ¥, and it is disjoint from the Open »d
U ﬂU" “‘"".‘Uh

formed by taking the intersection of the corresponding neighborhoods of xo. Pov 2: ‘z
is a point of V, then z € Vy, for some i, hence Z ¢ U, andsoz ¢ U See Figure &
Then U is a neighborhood of 5o disjoint from Y, as desired.
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The statement we proved in the course of the preceding proof will be usefy; g
Jater, so we repeat it here for reference purposes:

Lemma 264. IfY is acompact subspace of the Hausdorff space X and x is not ip y )
then there exist disjoint open sets U and V of X containing xy and Y, respectively.

EXAMPLE 5. Once we prove that the interval [a, b] in R is compact, it follows from

Theorem 26.2 that any closed subspace of [a, b] is compact. On the other hand, it follows

Irom Theorem 26.3 that the intervals (a, b] and (a, b) in R cannot be compact (which we
knew already) because they are not closed in the Hausdorff space R.

EXAMPLE 6. One needs the Hausdorff condition in the hypothesis of Theorem 26.3.
Consider, for example, the finite complement topology on the real line. The only proper
subsets of & that

= that are closed in this topology are the finite sets. But every subset of R is
wompact in this topology, as you can check.

Theorem 26,5,

The image of a compac space under a continuous map is compact
Pre "
VN Y be continuoys

: the
e ((X) by, : ; let X be compact. Let 4 be a covering "
ATIAY VY vt open iy y The collec

tion
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I8 a collection of bie
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" Ay cover f(X).
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One important use of the Preceding theoye

‘e : n' i, ML ?
a homeomorphism: » 48 8 too! for verifying that a m ipi
. madh. < 5

Theorem 26.6.  Let f 1 X s y o, bijective

. A5 v conty ,
ond Y is Hausdorft, then f is a home fitinuous

Omorphism.

proof.  We sha‘ll pmvc that images of closed sets of X under f

will prove contnuity of the map ! | 4 iq closed 'UmXL hen A 1
‘ y of _ s closed in

Theorem 26.2. Therefore, by the theore '

. . ) m just pr e .
Hausdorff, f(A) is closed in ¥, by Theorem 263-‘)Vcd, J(A) is compact. Since ¥ s

function, If x s compact

din Y. this
then A is compact. by

Theorem 26.7. The product of finitely many compact spaces is compact

Proof. We sha_ll prove that the product of two compact spaces is compact; the theo-
rem follows by induction for any finite product. '

Siep 1. Suppose that we are given spaces X and Y, with ¥ compact. Suppose that

xp is a point of X, and N is an open set of X x ¥ containing the “slice” xq x ¥ of
X x Y. We prove the following:

There is a neighborhood W of xy in X such that N contains the entire set
W x Y.

The set W x Y is often called a tube about xp x Y.

First let us cover xg x Y by basis elements U x V (for the topology of X x ¥)
lying in N. The space xp X Y is compact, being homeomcrphic to Y. Therefore, we
can cover xg x Y by finitely many such basis elements

Uy x Vi,...,Up x V.

(We assume that each of the basis elements U; x V; actually ir.uersec.ts xox Y, s‘in_ce
otherwise that basis element would be superfluous; we could discard it from the finite
collection and still have a covering of xo x Y.) Define

W:UIO---ﬂUn-

The set W is open, and it contains xo because each set U; x Vj intersects Xo X ') _
We assert that’ the sets U; » Vi, which were chosen to cover the slice xg x Y,
actually cover the tube W x Y. Let x Xy be a point of W x ) : (f\nsu:r lhe» po‘lm
i ‘ avi , same y-coordinate as this point. Now xg x ¥
X9 % y of the slice xo » Y having the same y=cOOH IS 3 Ba ot SRRt
belongs to U; x V; for some i, 80 that y € Vl.. Bult x € Uj forevery j (because x €
’['hel‘ef()r' ave % IS lll e V" , a8 dCSll:C( ' ’ ‘ ’ v
Sincz,a\ﬁi:: s((;ti Ui yx Vv liein N, and since they cover W x Y, the tube W x
lies in N also. See Figure 26.2. N
A . y ve the theorem. Let X and Y be compact spaces. Ltelan «r;
be an’eP L i gfmx « Y, Given xo € X, the slice xo X lf .I,Z L(;‘Ir]x]gr‘cunion
open rin : ‘ '
may thegefo:: T:Z cogvered by finitely many elements A, .. % f}‘lmo" o set N contains
N = A,U...UA,, is an open set containing xo x Y; by Step 1, the openi=
] 1 ... m
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atube W x Y about Xo X Y. where W is open in X. Then W x Y is covered by finitely

many elements A, .-+ A, of A. '
Thas. for each x in X, we can choose a neighborhood Wy of x such that the tube

W. x ¥ can be covered by finitely many elements of +. The collection of all the
ne‘ighborhoods W, is an open covering of X; therefore by compactness of X, there

exists a finite subcollection

{Wla swy Wk}
covering X . The union of the tubes
W1 XY,...,Wk xY

sl of X x ¥; since each may be covered by finitely many elements of s, so MY
X % Y be covered. 3

The statement proved in Step | of the preceding proof will be useful to us 1atet,
we repeal it here as a lemma, for reference purposes:

(l;::r':’:c"'c 2/61'8Nm,1e tube lemma).  Consider the product space X X Y, where ¥ ;5
pacl. Is-anopen set of X x Y COmaining the slice xq X Y of X X Y, then

C(Iflf' ,’l P o {
ains some tube W x Y about xo x Y, where W is a neighborhOOd of xo 1 X.
ExameLe 7, he tube lemmg i ample e

e axi ertai if Y i _ For ex
Vbe the y-axin in B2, gng e tainly not true if ¥ is not compact. F

ien N is an open set containi ains no tube
v h ) l' | y |
|”Ublrﬂl(:d in Fl! re ()5 n ‘“”'nb lhc sel () X R, but i[ COI'lt i § t :

Jtis
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Figure 26.3

There is an obvious question t0 ask at this point. s the product of infinitely many

compact spaces compact? One would hope that the answer is “yes,” and in fact it 1s.
The result is important (and difficult) enough to be called by the name of the man who
proved it; it is called the Tychonoff theorem.

In proving the fact that a cartesian product of connected spaces is connected, one
proves it first for finite products and derives the general case from that. In proving
that cartesian products of compact spaces are compact, however, there is no way to

go directly from finite products to infinite ones. The infinite case demands a new
approach, and the proof is a difficult one. Because of 1ts difficulty, and also to avoid
losing the main thread of our discussion in this chapter, Wé have decided to postpone it
until later. However, you can study it now1 sh: the section in which it is proved

without causing any disruption in

(§37) can be studied immediately after this section

continuity.
There is one final criterion for a space (0 be compact, a criterion that is formulated
in terms of closed sets rather than open sets. It does not look very natural nor very

useful at first glance, but it in fact proves o be useful on a qumber of occasions. First
we make a definition.

Definition. A collection C of subsets of X is said to have the finite intersection

property if for every finite subcollection

(Cyyerro Cn)

of C, the intersection Cj M "~ N Cp 18 nonempty:

Theorem 26.9. Let X be a topological space. Then X is compact if and only if

fOr every collection C of closed sets in X having the finite intersection property, the
intersection (e C Of all the elements of C is nonempty.
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of subsets of X, let
('“:{X-—AIAE.A}

of their complements. Then the following statements hold:

N ¢ } Lo . A

( ction of open sets if and only if € is a collection of clogeq Sets,

and only if the intersection ﬂCee C of 4 "

proof. Givena collection A&

be the collecti
iy a colle
(1) A1saco e
(2) The collection »A covers X if

i PO RN ly-
clements of €' 18 emp | | |
3) The finite subcollection (Al, ..., An}of A co:;e.rsf)é l.f and only if the ;

(< tion of the corresponding elements C; = X — A of € is empty,

The first statement s trivial, while the second and third follow from D eMorgan's a
i SU .

X = (4o = [ (X - Ad).
ael ael

The proof of the theorem now proceeds in two easy s'teps: taking the Contrapositiy,
(of the theorem), and then the complement (of the sets)! s

The statement that X is compact is equivalent to saying: Gl\{en any collection 4
of open subsets of X, if 4 covers X, then some ﬁmt.e sgbcollectlon 9f A covers X »
This statement is equivalent to its contrapositive, which is the following: “Givep any
collection + of open sets, if no finite subcollection of + covers X, then A does not
cover X7 Letting C be, as earlier, the collection {X — A | A € A} and applying
(1)(3), we see that this statement is in turn equivalent to the following: “Given any
collection C of closed sets, if every finite intersection of elements of C is nonempty,
then the intersection of all the elements of € is nonempty.” This is just the condition
of our theorem. [ |

Niersec.

A special case of this theorem occurs when we have a nested sequence C; D C; D
-2 Cp D Cpy1 D ... of closed sets in a compact space X. If each of the sets Cy, is

nonempty, then the collection C = {Cy} ez . automatically has the finite intersection
property. Then the intersection
(1

HEZ+
1S nonempty.

) We shal] use the closed set criterion for compactness in the next section to prove
l‘}c uncountability of the set of reg] numbers, in Chapter 5 when we prove the Ty-
chonoff theorem, and again in Chapter 8 when we prove the Baire category theoremm:

Exercises

L (a) Let 7 and - :
e T be two topologies on the set X; suppose that 7' D 7 Wha

does compactnace . o b
"IPACESs of X under one of these topologies imply about com? 3

(b 2?% under the otheyy
) Show that if v . s
and,‘fvll‘}l:i‘:.l,lt X i Compact Hausdorff under both 7 and 7' then either J

" A Cqual or they yre not comparable.
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< not empty:] * he a closed continuous surjective map such thy Pl

e a clos : .
) /. (Such a map is called a perfect map) s, lhayt]')f i
compac o X s compact [Hint: 1f U is an open set containj;, <1, XY
. act, then A 1
18 CO‘“P'“ ’

hborhood W of v such that p~ (W) is contained in U] ([y}),
neigh ~

',L for cach y € )

there 18 el EGDD
N X ‘] ’Ologlca b ' . . M
13, LetG ‘“\‘.“:5 B be subspaces of G. If A is closed and B is com
(a) LetAzs

losed. [Hint: 1f ¢ is not in A - B, find a neighborhood

is closed. -

‘:,t (B_l is disjoint from Al |
L 1 H be a subgroup of G; let p : G — G/H be the quotient g

(b) Le

W of c SUCh that

. [ map- p l

§27 Compact Subspaces of the Real Line

The theorems of the preceding section enable us to construct new compact spaces from
existing ones, but in order to get very far we have to find some compact spaces to start
with. The natural place to begin is the real line; we shall prove that every closed inter.
val in R 1s compact. Applications include the extreme value theorem and the uniform
continuity theorem of calculus, suitably generalized. We also give a characterization

of all compact subspaces of R", and a proof of the uncountability of the set of real
numbers.

[t turns out that in order to prove every closed interval in R
only one of the order properties of the real line—the least upper
shall prove the theorem using only this hypothesis: then it will
real line, but to well-ordered sets and other ordered sets as well.

1s compact, we need
bound property. We
apply not only to the

??:’:{:‘;::;;}-)Olget X be a simp] y orderec.i set I?aving the least upper bound property-
, £Y, each closed interva] jn x IS compact.
roo ! . .
hu})g{;wfr‘(e{; fk )(’Jw(en }:l < .b, let A be a covering of [a, b] by sets open in [a, b] 10 tﬂl::
eXistence of d ‘_Ey w ich is the Same as the order topology). We wish to prove &%
11mte subgo!lectxon of A covering [q, b). First we prove the followin&:
| yllci','flkdlﬁcrcnl from b, then there is a point y > x of [a, b] such that
n im'l‘n;d)i%u(’: )VLTL( ' by m. MOSt two elements of A. Then
5 0f the (v, JUECESSOr in X, let y be this immediate Successor .
clcmcnls of A If b f) Pm'nls X and Y, o that it can be covered by at most
;z;l?mmg’ X Becauge :S;(; ';Ezjned?me Successor in X, choose an element A[J(C), o)
e -S(i)r:r;c(.e;n la, b, o086 5 poiA is O.Pel.l, A contains an interval of th? fori]lzred by
Ment A of 4 Aty in (x, c); then the interval [x, y]1s €O

i xis g point ¢
the intery,| [x

If has a
X, ] consig

S R oo
eirsons b,
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Step 2. Let C be the set of all points y > a of
< S )y A 1,[ q ,
can be covered by finitely many elements of A, A‘ii)ly;rll;ugctl; Ft)hlatt(t)h:ahncntcrval la, y]
: case x = a,

we see that there exists at least one such y, so C is not I
, \ em et ¢
e md o the set terhEnad e < b pty. Let ¢ be the least upper

Step 3. We show that ¢ belongs to C; that is, we show that the interval [a, ¢

be covered by finitely many elements of A. Choose an element A of A cin&?f ‘,] Can'
since A is open, it contains an interval of the form (d, ¢] for some d in [a bc;m;:f]% fs
not in C, there must be a point z of C lying in the interval (d, ¢), because c;the}\wise d
would be a smaller upper bound on C than c. See Figure 27.1. Since ¢ is in C, the
interval [a, z] can be covered by finitely many, say n, elements of A. Now [z, c]’ lies
in the single element A of 4, hence [a, ¢] = [a, 2] U [z, c] can be covered by 1 + 1
elements of #. Thus c is in C, contrary to assumption.

z\ yory

33— e 13

a d c a c b
Figure 27.1 Figure 27.2

Step 4. Finally, we show that ¢ = b, and our theorem is proved. Suppose that
¢ < b. Applying Step 1 to the case x = ¢ we conclude that there exists a pointy > ¢
of [a, b] such that the interval [c, y] can be covered by finitely many elements of A.
See Figure 27.2. We proved in Step 3 that ¢ isin C, so [a, c] can be covered by finitely
many elements of A. Therefore, the interval

[a,y] = la,clVlc yl

s of ». This means that y is in C, con-

can also be covered by finitely many element -

tradicting the fact that ¢ is an upper bound on C.

Corollary 27.2. Every closed interval in R is compact.

n.
Now we characterize the compact subspaces of R™:

Theorem 27.3. A subspace A Of R" is compact if and only if it is closed and is
bounded in the euclidean metric d Of the square metric -

Proof. 1t will suffice to consider only (he metric p; the inequalities

p(x,y) dx ) = Jnp(x, )

. ' if ¢ it is bounded under 0.
imply th i d under d if and only if 1L1S ur .
pgups;:: lt;:to L,;miise c:mpact. Then, by Theorem 26.3, it is closed. Consider the

collection of open sets
(B,(0,m) | m € Ly}
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‘. ( i W\ anl‘ |),'," (', N

¢ " Some finite subcollection covers 4. It f
Il ot ‘
on s a

0 IOW
; . o ! )
whase Ui . M. Therefore, for any (WO points x and y of 4 ., hay A
W) for sonk : .
e \ i hounded under p.

spose that A 1 closed and hnundc.d under p; SUPpose that ~
Comerset. © lv of points of A. Choose a point xg of A, gpq let Plxg, ) 3
. implies that p(x.0) < N + b for every x jp 4 i p0 Y <

n Rin .S N ) \ = '
he cube [~ P, PI", which is compact. Bej

‘W Thas

A o aven ;‘\‘W l
anele noegqualtty =Ny

m< tﬂ‘"\k ! A n Clo . b‘

then 4 is a subsel of 1 & Sed, 4 18

alsg
\\\l‘m'\\“ '

Sudents often remember this theqmm as stating that the collectio of ¢o
Stude n:\ \‘ pace equals the collection of closed and boundeg sets. This State
i 1r :\m;;:u\lc”‘ as it stands, because the qugstion a5 to which seg are boypg
;;: ;\H‘ it answer on the metric, whereas which sets are compact depeps 3 nly;d,

the topalogy of the space.

ExampLE | The unit sphere $"~! and the closed unit ball B" i, R" are compag
because they are closed and bounded. The set

A={xx(1/x)[0<x <1}
u closed in R*, but it is not compact because it is not bounded. The set
§= {x x (sin(1/x)) |10 <x <1}

 bounded in B, but it is not compact because it s not closed.

Now we prove the extreme valye theorem of calculus, in suitably generalized form.

Theorem 274 (Extreme value theorem), [ et J: X' =Y be continuous, where ¥
18 an ordered set in the order topology. If X s compact, then there exist points ¢ andd
X such tha f(c) <flx)< f(d) forevery x € X.

The extreme value theore of
wecun when we ake X0
f‘!m’/f

calculus is the special case of this theorem tha
be a closed interya] i Rand Y tobe R.

s NNuoUs apd Xis compact, the set A = F(X) is compact We
et elemeny M and 3 smallest element m. Then since m and

A' we qve p
WA “{LI'rrnusl have J(e)and M = /(d) for some points ¢ and d of X.
R Elemeny, (o the collection

SIDLC j 18 CO
How that A
":;‘H‘K UJ

[(- %0,4a) |a e A)
m an opey r_cm'uny

A, Since 4 : '

A Singe 4 " Compact, some finite subcollection
{

%' l”)' Yy ("00, “")}

esé
b ) l » ol Ofth
e fact g m!lt elemeng a1, .. .ay,, then a; belongs to noNe

Ume Y Cover A ¥
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Now we prove the uniform continuity theorem of calculus. In the process, we
1o introduce a new notion that will prove to be surprisingly useful, that of a

arc k‘d . ' . ,
for an open covering of a metric space. First, a preliminary notion:

Lebesgue number

Let (X, d) be a metric space; let A be a nonempty subset of X. For each

Definition. /
define the distance from x to A by the equation

x € X,we

d(x,A) =inf{d(x,a) |a € A).

It is easy to show that for fixed A, the function d(x, A) is a continuous function
of x: Given x, y € X, one has the inequalities

d(x,A) <d(x,a) <d(x,y) +d(y,a),

foreach a € A. It follows that

d(x,A) —d(x,y) <infd(y,a) =d(y, A),

so that
d(x,A) —d(y,A) <d(x,y).

e
The same inequality holds with x and Yy interchanged; continuify of the function

d(x, A) follows.
Now we introduce the notion of Lebesgue number. Recall that the diameter of a

bounded subset A of a metric space (X, d) is the number

sup{d(ay, az) | a1, a2 € A}. |

Lemma 27.5 (The Lebesgue number lemma). Let A be an open covering of the
metric space (X, d). If X is compact, there is a8 > 0 such that for each subset of X
having diameter less than 8, there exists an element of A containing it.

The number & is called a Lebesgue number for the covering A.
Proof.  Let A be an open covering of X. If X itself is an element of A, then any

positive number is a Lebesgue number for 4. So assume X is not an element of A.
Choose a finite subcollection {A1, ..., An) of A that covers X. For each i, set

Ci=X — A;, and define f : X — IR by letting f(x) be the average of the numbers
d(x, C;). That s,
l n 3
j(x)=;2d(x'cl) ;
i=l

We «
soet ;how th.at f(x) > Oforall x, Given x € X, choosei sothatx € A;. Then choose €
€ €-neighborhood of x lies in A;. Then d(x, C;) = €, so that f(x) = €/n.




SS
mpactné
ectedness and Comp Ch.3
nn
% - d; we show t :
it has a minimum vglue e ;at di ur feg
fis contil'luousl;e a subset of X of diameter an §. Cp 00se ) Oimred
ince f 18 subs _

beSl::le number. L' (153 neighborhOOd of xg. Now %)

LebesE n the o-

of B; then B lies 1 5 < f(xo) < d(x0, Cm),

bers d(xo, Ci). Then the 8-neigh,
C,,) is the largest of thin;m_ Cm of the covering A, & borhood

where d(x0, .I;'éd in the element Am = X
- 18 contal .

of xpI8 € i the metric space (X, dx) to;he I(;lﬁtnc Space

Definition. A ;unctllyogonﬁnuous if given € > 0, there is a § > ( gycp, that
- iform .

is said to be unt

ir of points xo, X1 of X,
pair of poin i (o, x1) < 8 = dy (f(x0), F(D) <.
X ’

(¥, dy)
fOI‘ eVery

. Letf : X >y beacontinuous

: tinuity theorem). / '
Theorem 27.6 (l;l;ltf‘;:‘mi"?pace (X, dx) to the metric space (Y,dy). The, fis
map of the comp

uniformly continuous.

' Y by balls B(y, €/2) of radius €/2,
: the open covering of

Proof. Given € >08;riu:1kgeo Y bI))/ the inverse imageg of these balls untder f ;);lt]so?);e ;(s
e OPC: rcmmber for the covering +. Then if x; z.md X2 alfe wtl?alr)n ot
Gt do ) < B, i two-poit st {31, 12) e s ool i
'Stzci]:na;e {;(x:)"f(xz)} lies in some ball B(y, €/2). Then dy (f(x1), .
I s
desired.

i ting thing
Finally, we prove that the real numbers are uncountab.le. Th(:) il:;:;e:xpfn b
about this I;roof is that it involves no algebra at al!—no decimal or
of real numbers or the like—just the order properties of R.
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